Home
Class 12
MATHS
int(0)^(pi)(x tanx)/(secx+cosx)dx is...

`int_(0)^(pi)(x tanx)/(secx+cosx)dx` is

A

`(pi^(2))/4`

B

`(pi^(2))/2`

C

`(3pi^(2))/2`

D

`(pi^(2))/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \), we will utilize the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals Let \( I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \). Now, we will change the variable \( x \) to \( \pi - x \): \[ I = \int_{0}^{\pi} \frac{(\pi - x) \tan(\pi - x)}{\sec(\pi - x) + \cos(\pi - x)} \, dx \] ### Step 2: Simplify the integrand Using the trigonometric identities: - \( \tan(\pi - x) = -\tan x \) - \( \sec(\pi - x) = -\sec x \) - \( \cos(\pi - x) = -\cos x \) We can rewrite the integral as: \[ I = \int_{0}^{\pi} \frac{(\pi - x)(-\tan x)}{-\sec x - \cos x} \, dx \] This simplifies to: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \tan x}{\sec x + \cos x} \, dx \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \) 2. \( I = \int_{0}^{\pi} \frac{(\pi - x) \tan x}{\sec x + \cos x} \, dx \) Adding these two equations: \[ 2I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx + \int_{0}^{\pi} \frac{(\pi - x) \tan x}{\sec x + \cos x} \, dx \] This simplifies to: \[ 2I = \int_{0}^{\pi} \frac{\pi \tan x}{\sec x + \cos x} \, dx \] ### Step 4: Solve for \( I \) Now we can express \( I \): \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi \tan x}{\sec x + \cos x} \, dx \] ### Step 5: Simplify the integral We can further simplify the integrand: \[ \sec x + \cos x = \frac{1}{\cos x} + \cos x = \frac{1 + \cos^2 x}{\cos x} \] Thus, we have: \[ I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx \] ### Step 6: Change of variable Let \( u = \cos x \), then \( du = -\sin x \, dx \). The limits change from \( x = 0 \) to \( x = \pi \), which corresponds to \( u = 1 \) to \( u = -1 \): \[ I = \frac{\pi}{2} \int_{1}^{-1} \frac{-1}{1 + u^2} \, du = \frac{\pi}{2} \int_{-1}^{1} \frac{1}{1 + u^2} \, du \] ### Step 7: Evaluate the integral The integral \( \int \frac{1}{1 + u^2} \, du \) is known to be \( \tan^{-1}(u) \): \[ I = \frac{\pi}{2} \left[ \tan^{-1}(u) \right]_{-1}^{1} = \frac{\pi}{2} \left( \tan^{-1}(1) - \tan^{-1}(-1) \right) = \frac{\pi}{2} \left( \frac{\pi}{4} + \frac{\pi}{4} \right) = \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi^2}{4} \] ---

To solve the integral \( I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \), we will utilize the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals Let \( I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} \, dx \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi)(x tan x)/(secx+cos x)dx

Evaluate the following : int_(0)^(pi)(x tanx)/(secx "cosec x")dx

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

int_(0)^(pi/3)(x)/(1+secx)dx

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx, B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx and B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_0^pi (xtanx)/(secx+tanx)dx

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. If I=int(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest i...

    Text Solution

    |

  2. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  3. int(0)^(pi)(x tanx)/(secx+cosx)dx is

    Text Solution

    |

  4. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  5. int(-3)^(3)x^(8){x^(11)}dx is equal to (where {.} is the fractional pa...

    Text Solution

    |

  6. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  7. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

    Text Solution

    |

  8. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  9. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  10. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/...

    Text Solution

    |

  11. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dxi se q u a lto e+1 ...

    Text Solution

    |

  12. The value of int(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

    Text Solution

    |

  13. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  14. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  15. int1^4(x-0. 4)dxe q u a l s(w h e r e{x}i safr a c t ion a lp a r tof(...

    Text Solution

    |

  16. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  17. int0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] den...

    Text Solution

    |

  18. int(0)^(x)(2^(t))/(2^([t]))dt, where [.] denotes the greatest integer ...

    Text Solution

    |

  19. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  20. Ifg(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, wher...

    Text Solution

    |