Home
Class 12
MATHS
Let T >0 be a fixed real number. Suppose...

Let `T >0` be a fixed real number. Suppose `f` is continuous function such that for all `x in R ,f(x+T)=f(x)dot` If `I=int_0^Tf(x)dx ,` then the value of `int_3^(3+3T)f(2x)dx` is `3/2I` (b) `2I` (c) `3I` (d) `6I`

A

`3/2I`

B

`2I`

C

`3I`

D

`6I`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I_(1)=int_(3)^(3+3T) f(2x)dx`
Put `2x=y` so that `I_(1)=1/2int_(6)^(6+6T)f(y)dy`
`=1/2 6int_(0)^(T)dy` [ `:' f(x)` has period `T`]
`=3I`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let T>0 be a fixed real number.Suppose f is continuous function such that for all x in R,f(x+T)=f(x)* If I=int_(0)^(T)f(x)dx then the value of int_(3)^(3+3T)f(2x)dx is (a) (3)/(2)I( b) 2I( c) 3I(d)6I

Let Tgt0 be a fixed real number. Suppose f is a cintinuous function such that f(x+T) = f(x) "for all" x in R . If I=int_(0)^(T) f(x)dx, then the vlaue of int_(3)^(3+3T) f(2x)dx is

I=int_(0)^(T)f(x)dx, then show that int_(3)^(3+3T)f(2x)dx=3I

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. The value of int(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

    Text Solution

    |

  2. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  3. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  4. int1^4(x-0. 4)dxe q u a l s(w h e r e{x}i safr a c t ion a lp a r tof(...

    Text Solution

    |

  5. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  6. int0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] den...

    Text Solution

    |

  7. int(0)^(x)(2^(t))/(2^([t]))dt, where [.] denotes the greatest integer ...

    Text Solution

    |

  8. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  9. Ifg(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, wher...

    Text Solution

    |

  10. Ifx=intc^(sint)sin^(-1)z dz ,y=intk^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)...

    Text Solution

    |

  11. Let f(x)=int(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then...

    Text Solution

    |

  12. If f(x) is differentiable and int0^(t^2)xf(x)dx=2/5t^5, then f(4/(25))...

    Text Solution

    |

  13. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to -...

    Text Solution

    |

  14. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  15. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  16. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  17. If int(0)^(x)f(t)dt=x+int(x)^(1)f(t)dt,then the value of f(1) is

    Text Solution

    |

  18. Iff(x)=1+1/xint1^xf(t)dt ,t h e nt h ev a l u eof(e^(-1))i s 1 (b) 0 ...

    Text Solution

    |

  19. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  20. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |