Home
Class 12
MATHS
If int(0)^(x)f(t)dt=x+int(x)^(1)f(t)dt,t...

If `int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt`,then the value of `f(1)` is

A

`1//2`

B

`0`

C

`1`

D

`-1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x + \int_{x}^{1} f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \(x\) Using the Leibniz rule for differentiation under the integral sign, we differentiate both sides: \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) \, dt \right) = \frac{d}{dx} \left( x + \int_{x}^{1} f(t) \, dt \right) \] ### Step 2: Apply Leibniz rule The left-hand side becomes: \[ f(x) \] The right-hand side can be differentiated as follows: \[ \frac{d}{dx}(x) + \frac{d}{dx} \left( \int_{x}^{1} f(t) \, dt \right) = 1 + \left( -f(x) \right) = 1 - f(x) \] ### Step 3: Set the derivatives equal to each other Now we have: \[ f(x) = 1 - f(x) \] ### Step 4: Solve for \(f(x)\) Adding \(f(x)\) to both sides gives: \[ 2f(x) = 1 \] Dividing both sides by 2, we find: \[ f(x) = \frac{1}{2} \] ### Step 5: Find \(f(1)\) Since \(f(x)\) is a constant function, we can directly find: \[ f(1) = \frac{1}{2} \] Thus, the value of \(f(1)\) is: \[ \boxed{\frac{1}{2}} \] ---

To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x + \int_{x}^{1} f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \(x\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

f(x)=x^(3)+1-2x int_(0)^(x)g(t)dt and g(x)=x-int_(0)^(1)f(t)dt. Then yhe value of int_(0)^(1)f(t)dt lies in the interval

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(1) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-int(x+y->a)e^(sin^2t)dt] is equa...

    Text Solution

    |

  2. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  3. If int(0)^(x)f(t)dt=x+int(x)^(1)f(t)dt,then the value of f(1) is

    Text Solution

    |

  4. Iff(x)=1+1/xint1^xf(t)dt ,t h e nt h ev a l u eof(e^(-1))i s 1 (b) 0 ...

    Text Solution

    |

  5. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  6. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  7. the value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  8. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  9. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  10. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  11. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  12. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  13. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  14. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  15. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  16. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  17. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  18. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  19. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  20. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |