Home
Class 12
MATHS
lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt...

`lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1))` is equal to

A

`(pi)/2`

B

`(pi)/4`

C

1

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\int_{0}^{x} \tan^{-1}(t) \, dt}{\sqrt{x^2 + 1}}, \] we will follow these steps: ### Step 1: Evaluate the integral We need to evaluate the integral \(\int_{0}^{x} \tan^{-1}(t) \, dt\). We can use integration by parts for this. Let: - \(u = \tan^{-1}(t)\) and \(dv = dt\). Then, we have: - \(du = \frac{1}{1+t^2} dt\) and \(v = t\). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int_{0}^{x} \tan^{-1}(t) \, dt = \left[ t \tan^{-1}(t) \right]_{0}^{x} - \int_{0}^{x} \frac{t}{1+t^2} dt. \] ### Step 2: Evaluate the boundary terms Now, we evaluate the boundary terms: \[ \left[ t \tan^{-1}(t) \right]_{0}^{x} = x \tan^{-1}(x) - 0 = x \tan^{-1}(x). \] ### Step 3: Evaluate the second integral Next, we need to evaluate \(\int_{0}^{x} \frac{t}{1+t^2} dt\). We can use the substitution \(u = 1 + t^2\), which gives \(du = 2t \, dt\) or \(dt = \frac{du}{2t}\). The limits change from \(t = 0\) to \(t = x\) which translates to \(u = 1\) to \(u = 1 + x^2\). Thus, \[ \int_{0}^{x} \frac{t}{1+t^2} dt = \frac{1}{2} \int_{1}^{1+x^2} \frac{1}{u} du = \frac{1}{2} \left[ \ln(u) \right]_{1}^{1+x^2} = \frac{1}{2} \left( \ln(1+x^2) - \ln(1) \right) = \frac{1}{2} \ln(1+x^2). \] ### Step 4: Combine results Combining these results, we have: \[ \int_{0}^{x} \tan^{-1}(t) \, dt = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2). \] ### Step 5: Substitute back into the limit Now substituting back into the limit: \[ \lim_{x \to \infty} \frac{x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2)}{\sqrt{x^2 + 1}}. \] ### Step 6: Simplify the limit As \(x \to \infty\), \(\tan^{-1}(x) \to \frac{\pi}{2}\), so: \[ x \tan^{-1}(x) \sim \frac{\pi}{2} x. \] Also, \(\sqrt{x^2 + 1} \sim x\). Thus, the limit simplifies to: \[ \lim_{x \to \infty} \frac{\frac{\pi}{2} x - \frac{1}{2} \ln(1+x^2)}{x}. \] ### Step 7: Separate the terms This can be separated as: \[ \lim_{x \to \infty} \left( \frac{\pi}{2} - \frac{\frac{1}{2} \ln(1+x^2)}{x} \right). \] As \(x \to \infty\), \(\frac{\ln(1+x^2)}{x} \to 0\) because \(\ln(1+x^2) \sim 2 \ln(x)\) and \(\frac{2 \ln(x)}{x} \to 0\). ### Step 8: Final result Thus, the limit evaluates to: \[ \frac{\pi}{2}. \] ### Conclusion Therefore, the final result is: \[ \lim_{x \to \infty} \frac{\int_{0}^{x} \tan^{-1}(t) \, dt}{\sqrt{x^2 + 1}} = \frac{\pi}{2}. \]

To solve the limit \[ \lim_{x \to \infty} \frac{\int_{0}^{x} \tan^{-1}(t) \, dt}{\sqrt{x^2 + 1}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(hto0)(1)/(h)int_(x)^(x+h)(dz)/(z+sqrt(z^(2)+1)) is equal to -

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(x rarr-oo)(x^(2)*sin((1)/(x)))/(sqrt(9x^(2)+x+1)) is equal to

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  2. the value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  3. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  4. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  5. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  6. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  7. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  8. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  9. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  10. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  11. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  12. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  13. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  14. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  15. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  16. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  17. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  18. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  19. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  20. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |