Home
Class 12
MATHS
A function f is defined by f(x) = int0^p...

A function f is defined by `f(x) = int_0^pi cos t cos(x-t)dt,0 <= x <= 2 pi` then which of the following.hold(s) good?

A

`(pi)/4`

B

`(pi)/2`

C

`(-pi)/2`

D

`(-pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=int_(0)^(pi)cost cos(x-t)dt`………..1
`=int_(0)^(pi)cos(pi-t)cos(x-(pi-t))dt`
`:.f(x)=int_(0)^(pi)cot.cos(x+t)dt` ………………2
From 1+2 gives
`2f(x)=int_(0)^(pi) cost(2cosx.cost)dt`
`:. f(x)=cosx int_(0)^(pi)cos^(2)tdt=2cos int_(0)^(pi//2) cos^(2)t dt`
`:.f(x)=(picosx)/2`
Hence minimum value of `f(x)` is `(-pi)/2`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A function fis defined by f(x)=int_(0)^( pi)cos t cos(x-t)dt,0<=x<=2 pi then which of the following.hold(s) good?

A function f is defined by f(x)=\ int_0^picostcos(x-t)dt ,\ 0lt=xlt=2pi then find its minimum value.

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

A differentiable function satisfies f(x) = int_(0)^(x) (f(t) cot t - cos(t - x))dt . Which of the following hold(s) good?

A differentiable function satisfies f(x)=int_(0)^(x){f(t)cost-cos(t-x)}dt. Which is of the following hold good?

Difference between the greatest and least values opf the function f (x) = int _(0)^(x) (cos ^(2) t + cos t +2) dt in the interval [0, 2pi] is K pi, then K is equal to:

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. the value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  2. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  3. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  4. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  5. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  6. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  7. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  8. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  9. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  10. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  11. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  12. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  13. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  14. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  15. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  16. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  17. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  18. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  19. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  20. If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0)=1, then the value of f(log(e...

    Text Solution

    |