Home
Class 12
MATHS
If f' is a differentiable function satis...

If `f'` is a differentiable function satisfying `f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2` then the value of `f(pi)` is equal to

A

`-(sqrt(3))/2`

B

`-1/2`

C

`(sqrt(3))/2`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation for the function \( f(x) \): \[ f(x) = \int_{0}^{x} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} \] We need to find the value of \( f(\pi) \). ### Step 1: Differentiate Both Sides We differentiate both sides of the equation with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left( \int_{0}^{x} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} \right) \] Using the Fundamental Theorem of Calculus, we get: \[ f'(x) = \sqrt{1 - f^2(x)} \] ### Step 2: Rearranging the Equation We can rearrange the equation obtained from differentiation: \[ f'(x) = \sqrt{1 - f^2(x)} \] Squaring both sides gives: \[ (f'(x))^2 = 1 - f^2(x) \] ### Step 3: Express \( f^2(x) \) Rearranging the equation, we find: \[ f^2(x) + (f'(x))^2 = 1 \] This resembles the Pythagorean identity, suggesting that \( f(x) \) could be expressed in terms of sine or cosine functions. ### Step 4: Assume a Form for \( f(x) \) Let’s assume: \[ f(x) = \sin(g(x)) \] Then, differentiating \( f(x) \): \[ f'(x) = \cos(g(x)) g'(x) \] Substituting into our equation: \[ \sin^2(g(x)) + \cos^2(g(x)) (g'(x))^2 = 1 \] This simplifies to: \[ \sin^2(g(x)) + \cos^2(g(x)) (g'(x))^2 = 1 \] ### Step 5: Solve for \( g'(x) \) Since \( \sin^2(g(x)) + \cos^2(g(x)) = 1 \), we can conclude that: \[ g'(x) = 1 \] Thus, \( g(x) = x + C \) for some constant \( C \). ### Step 6: Find \( f(x) \) Substituting back, we have: \[ f(x) = \sin(x + C) \] ### Step 7: Determine the Constant \( C \) To find \( C \), we can use the initial condition from \( f(0) \): \[ f(0) = \int_{0}^{0} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} = \frac{1}{2} \] Thus: \[ f(0) = \sin(0 + C) = \sin(C) = \frac{1}{2} \] This implies: \[ C = \frac{\pi}{6} \quad \text{(since } \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \text{)} \] ### Step 8: Final Form of \( f(x) \) Now we can express \( f(x) \): \[ f(x) = \sin\left(x + \frac{\pi}{6}\right) \] ### Step 9: Calculate \( f(\pi) \) Finally, we compute \( f(\pi) \): \[ f(\pi) = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\left(\frac{7\pi}{6}\right) \] Since \( \frac{7\pi}{6} \) is in the third quadrant, we have: \[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \] Thus, the value of \( f(\pi) \) is: \[ \boxed{-\frac{1}{2}} \]

To solve the problem, we start with the given equation for the function \( f(x) \): \[ f(x) = \int_{0}^{x} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} \] We need to find the value of \( f(\pi) \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If a differentiable function f(x) satisfies f(x)=int_(0)^(x)(f(t)cos t-cos(t-x))dt then value of (1)/(e)(f''((pi)/(2))) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

Let f:R to R be a function which satisfies f(x)=int_(0)^(x) f(t) dt .Then the value of f(In5), is

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0)=1, then the value of f(log(e...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |