Home
Class 12
MATHS
If int 0^1e^(x^2)(x-alpha)dx=0, then...

If `int _0^1e^(x^2)(x-alpha)dx=0`, then

A

`1 lt alpha lt 2`

B

`alpha lt 0`

C

`0 lt alpha lt 1`

D

`alpha=0`

Text Solution

Verified by Experts

The correct Answer is:
C

We have `int_(0)^(1) e^(x^(2))(x-alpha)dx=0`
or `int_(0)^(1)e^(x^(2))xdx=int_(0)^(1)e^(x^(2)) alpha dx`
or `1/2 int_(0)^(1) e^(t) dt=alpha int_(0)^(1) e^(x^(2))dx`, where `t=x^(2)`
or`1/2 (e-1)=alpha int_(0)^(1)e^(x^(2))dx`…………….1
Since `e^(x^(2))` is an increasing function for `0lexle1`.
`1le e^(x^(2))le e` when `0 le x le 1`
or `1(1-0)le int_(0)^(1)e^(x^(2))dxle(1-0)`
or `1 le int_(0)^(1) e^(x^(2))dxle e`................2
From equation 1 and 2 we find that L.H.S of equation 1 is positive and `int_(0)^(1)e^(x^(2))dx` lies between 1 and `e`. Therefore `alpha` is a positive real number.
Now, from equation 1 `alpha=(1/2(e-1))/(int_(0)^(1)e^(x^(2))dx)`.................3
The denominator of equation 3 is greater than unity and the numerator lies between 0 and 1. Threfore, `0 lt alpha lt 1`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1)e^(x^(2))(x-alpha)dx=0, then

If int_(0)^(1)e^(x)-2(x-alpha)dx=0, then aly alpha<2(b)=alpha<0(c)=0

If int_(0)^(1) e^(x^(2))(x-alpha)dx=0 then

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

If I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0 , then alpha lies in the interval

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_0^5e^(-2x)dx

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

If int_(0)^(1) (3x^(2) + 2x+ alpha)dx =0, " then " alpha=

I=int_(0)^(1)e^(x^(2)-x)dx then

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0)=1, then the value of f(log(e...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |