Home
Class 12
MATHS
Let f beintegrable over [0,a] for any re...

Let `f` beintegrable over `[0,a]` for any real value of `a`.
If `I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta` and `I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta`, then

A

`I_(1)=-2I_(2)`

B

`I_(1)=I_(2)`

C

`2I_(1)=I_(2)`

D

`I_(1)=-I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a relationship between the integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_0^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] \[ I_2 = \int_0^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] ### Step 1: Rewrite \( I_1 - I_2 \) We start by expressing \( I_1 - I_2 \): \[ I_1 - I_2 = \int_0^{\frac{\pi}{2}} \left( \cos \theta - \sin 2\theta \right) f(\sin \theta + \cos^2 \theta) \, d\theta \] ### Step 2: Simplify \( \sin 2\theta \) Recall that \( \sin 2\theta = 2 \sin \theta \cos \theta \). Thus, we can rewrite the expression: \[ I_1 - I_2 = \int_0^{\frac{\pi}{2}} \left( \cos \theta - 2 \sin \theta \cos \theta \right) f(\sin \theta + \cos^2 \theta) \, d\theta \] ### Step 3: Factor out the common terms Now, factor out \( \cos \theta \): \[ I_1 - I_2 = \int_0^{\frac{\pi}{2}} \cos \theta \left( 1 - 2 \sin \theta \right) f(\sin \theta + \cos^2 \theta) \, d\theta \] ### Step 4: Change of Variable Let \( t = \sin \theta + \cos^2 \theta \). We need to find \( dt \): - The derivative \( dt = (\cos \theta - 2 \sin \theta \cos \theta) d\theta \). ### Step 5: Determine the limits of integration When \( \theta = 0 \): \[ t = \sin(0) + \cos^2(0) = 0 + 1 = 1 \] When \( \theta = \frac{\pi}{2} \): \[ t = \sin\left(\frac{\pi}{2}\right) + \cos^2\left(\frac{\pi}{2}\right) = 1 + 0 = 1 \] ### Step 6: Evaluate the integral Thus, the limits of integration for \( t \) are from \( 1 \) to \( 1 \): \[ I_1 - I_2 = \int_1^1 f(t) \, dt = 0 \] ### Conclusion Since \( I_1 - I_2 = 0 \), we conclude that: \[ I_1 = I_2 \] ### Final Answer Thus, the relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = I_2 \]

To solve the problem, we need to find a relationship between the integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_0^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] \[ I_2 = \int_0^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta + \cos^2 \theta) \, d\theta ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^( pi/4)(sin2 theta)/(sin^(2)theta+cos^(4)theta)d theta

Let the be an integrable function defined on [0,a] if I_(1)=int_(pi//2)^(pi//2) cos theta f(sin theta cos ^(2) theta)d theta and I_(2)=int_(0)^(pi//2)sin 2 theta f(sin theta cos ^(2) theta)d theta then

int_(0) ^(pi//2) cos^(2) theta d theta =

int_(0)^(pi//2) (sin^(2)theta)/ (1+cos theta)^(2) d theta =

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi)(sin theta+cos theta)/(sqrt(1+sin2 theta))d theta

int_(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0)=1, then the value of f(log(e...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |