Home
Class 12
MATHS
If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0...

If `f'(x)=f(x)+int_(0)^(1)f(x)dx`,given `f(0)=1`, then the value of `f(log_(e)2)` is

A

`1/(3+e)`

B

`(5-e)/(3-e)`

C

`(2+e)/(e-2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. We have the differential equation: \[ f'(x) = f(x) + \int_0^1 f(x) \, dx \] 2. We are also given the initial condition: \[ f(0) = 1 \] ### Step 1: Rewrite the equation Let \( C = \int_0^1 f(x) \, dx \). The equation simplifies to: \[ f'(x) = f(x) + C \] ### Step 2: Solve the differential equation This is a first-order linear ordinary differential equation. We can rearrange it as: \[ f'(x) - f(x) = C \] The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{-\int 1 \, dx} = e^{-x} \] Multiplying the entire equation by the integrating factor: \[ e^{-x} f'(x) - e^{-x} f(x) = C e^{-x} \] The left-hand side can be rewritten as: \[ \frac{d}{dx}(e^{-x} f(x)) = C e^{-x} \] ### Step 3: Integrate both sides Integrating both sides with respect to \( x \): \[ e^{-x} f(x) = -C e^{-x} + K \] where \( K \) is a constant of integration. Multiplying through by \( e^{x} \): \[ f(x) = -C + K e^{x} \] ### Step 4: Apply the initial condition Using the initial condition \( f(0) = 1 \): \[ f(0) = -C + K = 1 \] Thus, we have: \[ K - C = 1 \quad \text{(1)} \] ### Step 5: Find \( C \) Now, we need to find \( C \): \[ C = \int_0^1 f(x) \, dx = \int_0^1 (-C + K e^{x}) \, dx \] Calculating the integral: \[ = \int_0^1 -C \, dx + \int_0^1 K e^{x} \, dx \] \[ = -C + K[e^{x}]_0^1 = -C + K(e - 1) \] So we have: \[ C = -C + K(e - 1) \] Rearranging gives: \[ 2C = K(e - 1) \quad \text{(2)} \] ### Step 6: Solve equations (1) and (2) From equation (1): \[ K = C + 1 \] Substituting into equation (2): \[ 2C = (C + 1)(e - 1) \] Expanding: \[ 2C = C(e - 1) + (e - 1) \] Rearranging gives: \[ C(2 - (e - 1)) = e - 1 \] \[ C(3 - e) = e - 1 \] Thus: \[ C = \frac{e - 1}{3 - e} \] ### Step 7: Find \( K \) Substituting \( C \) back into \( K = C + 1 \): \[ K = \frac{e - 1}{3 - e} + 1 = \frac{e - 1 + (3 - e)}{3 - e} = \frac{2}{3 - e} \] ### Step 8: Write the function \( f(x) \) Now we have: \[ f(x) = -C + K e^{x} = -\frac{e - 1}{3 - e} + \frac{2}{3 - e} e^{x} \] \[ = \frac{- (e - 1) + 2 e^{x}}{3 - e} = \frac{2 e^{x} - e + 1}{3 - e} \] ### Step 9: Find \( f(\log_e 2) \) Now we need to find \( f(\log_e 2) \): \[ f(\log_e 2) = \frac{2 e^{\log_e 2} - e + 1}{3 - e} = \frac{2 \cdot 2 - e + 1}{3 - e} = \frac{4 - e + 1}{3 - e} = \frac{5 - e}{3 - e} \] ### Final Answer Thus, the value of \( f(\log_e 2) \) is: \[ \frac{5 - e}{3 - e} \]

To solve the problem, we start with the given information: 1. We have the differential equation: \[ f'(x) = f(x) + \int_0^1 f(x) \, dx \] 2. We are also given the initial condition: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.11|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=f(x)+int_(0)^(1)f(x)dx, given f(0)=1 then the value of f((log)_(2)2) is (a) (1)/(3+e)(b)(5-e)/(3-e)(c)(2+e)/(e-2) (d) none of these

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If a function fis such that f(x)=int_(0)^(x)(dx)/(f(x)) and f(1)=sqrt(2), then the value of f(2) is

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

CENGAGE-DEFINITE INTEGRATION -Exercise (Single)
  1. lim(xto oo) (int(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (0,1) ...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v|forua n dv in [a , b]dot The...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log ...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n ep...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. L e tI1=int(-2)^2(x^6+3x^5+7x^4)/(x^4+2)dxa n d I2=int(-3)^1(2(x+1)^2...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b(x-a)^3(b-x)^4dxi s ((b-a)^4)/(6^4) (b) ((b-a)^8)...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+int(0)^(1)f(x)dx,given f(0)=1, then the value of f(log(e...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |