Home
Class 12
MATHS
Let g(x) be differentiable on R and int(...

Let `g(x)` be differentiable on `R` and `int_(sint)^1x^2g(x)dx=(1-sint),` where `t in (0,pi/2)dot` Then the value of `g(1/(sqrt(2)))` is____

Text Solution

Verified by Experts

The correct Answer is:
2

We have `int_(sint)^(1) x^(2)g(x)dx=(1sint)`…………1
Differentiating both the sides of 1 with respect to `t` we get
`0-(sin^(2)t)g(sint)(cost)=-cost`
or `g(sint)=1/(sin^(2)t)`…………….2
Putting `t=(pi)/4` in (2) we get `g(1/(sqrt(2)))=2`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let g(x) be differentiable on R and int_( sin t)^(1)x^(2)g(x)dx=(1-sin t), where t in(0,(pi)/(2)). Then the value of g((1)/(sqrt(2))) is

If g(x) is a differentiable function such that int_(1)^(sinalpha)x^(2)g(x)dx=(sin alpha-1), AA alpha in (0,(pi)/(2)) , then the value of g((1)/(3)) is equal to

Let g(x)=int(1+2cos x)/((cos x+2)^(2))dx and g(0)=0. then the value of 8g((pi)/(2)) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=x^(3)+x-2 be a function than int_(-2)^(0)g(x)dx equals where g(x)=f^(-1)x

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then g(x)((2-sin2x)/(1-cos2x))dx is equal to

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then,the value of g'(x) is

CENGAGE-DEFINITE INTEGRATION -Exercise (Numerical)
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is.

    Text Solution

    |

  2. Let f(x) be differentiate function symmetric about x=2, then the value...

    Text Solution

    |

  3. Let f:[0,oo)vecR be a continuous strictly increasing function, such th...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3)dotintt^2f(u)d u)dt ...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oox^(2n+1)dote^(-xdx)=360 , then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^tsin(x-t)dt...

    Text Solution

    |

  10. Let f(x)=1/x^2 int0^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11))i se q u a lto

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dxa n dK=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. Iff(x)=x+int0^1t(x+t)f(t)dt ,t h e nt h ev a l u eof(23)/2f(0) is ...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)(x-x^(2))-sqrt((1-x^(2))(2x-x^(2)))dx i...

    Text Solution

    |