Home
Class 12
MATHS
Let y=f(x)=4x^(3)+2x-6, then the value o...

Let `y=f(x)=4x^(3)+2x-6`, then the value of `int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy` is equal to _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \int_{0}^{2} f(x) \, dx + \int_{0}^{30} f^{-1}(y) \, dy \] where \( f(x) = 4x^3 + 2x - 6 \). ### Step 1: Calculate \(\int_{0}^{2} f(x) \, dx\) We first compute the integral of \( f(x) \) from 0 to 2: \[ \int_{0}^{2} f(x) \, dx = \int_{0}^{2} (4x^3 + 2x - 6) \, dx \] Calculating the integral term by term: \[ = \int_{0}^{2} 4x^3 \, dx + \int_{0}^{2} 2x \, dx - \int_{0}^{2} 6 \, dx \] Calculating each integral: 1. \(\int 4x^3 \, dx = x^4\), so: \[ \left[ x^4 \right]_{0}^{2} = 2^4 - 0^4 = 16 \] 2. \(\int 2x \, dx = x^2\), so: \[ \left[ x^2 \right]_{0}^{2} = 2^2 - 0^2 = 4 \] 3. \(\int 6 \, dx = 6x\), so: \[ \left[ 6x \right]_{0}^{2} = 6(2) - 6(0) = 12 \] Putting it all together: \[ \int_{0}^{2} f(x) \, dx = 16 + 4 - 12 = 8 \] ### Step 2: Calculate \(\int_{0}^{30} f^{-1}(y) \, dy\) Using the property of integrals and inverse functions, we have: \[ \int_{a}^{b} f^{-1}(y) \, dy + \int_{f^{-1}(a)}^{f^{-1}(b)} f(x) \, dx = b f^{-1}(b) - a f^{-1}(a) \] In our case, \( a = 0 \) and \( b = 30 \). We need to find \( f^{-1}(0) \) and \( f^{-1}(30) \). 1. **Finding \( f^{-1}(0) \)**: Set \( f(x) = 0 \): \[ 4x^3 + 2x - 6 = 0 \] Testing \( x = 1 \): \[ f(1) = 4(1)^3 + 2(1) - 6 = 4 + 2 - 6 = 0 \] Thus, \( f^{-1}(0) = 1 \). 2. **Finding \( f^{-1}(30) \)**: Set \( f(x) = 30 \): \[ 4x^3 + 2x - 6 = 30 \implies 4x^3 + 2x - 36 = 0 \] Testing \( x = 2 \): \[ f(2) = 4(2)^3 + 2(2) - 6 = 32 + 4 - 6 = 30 \] Thus, \( f^{-1}(30) = 2 \). Now we can apply the property: \[ \int_{0}^{30} f^{-1}(y) \, dy + \int_{1}^{2} f(x) \, dx = 30 \cdot 2 - 0 \cdot 1 \] Calculating the right-hand side: \[ 30 \cdot 2 = 60 \] Thus, \[ \int_{0}^{30} f^{-1}(y) \, dy + \int_{1}^{2} f(x) \, dx = 60 \] ### Step 3: Calculate \(\int_{1}^{2} f(x) \, dx\) We already calculated \( \int_{0}^{2} f(x) \, dx = 8 \), so: \[ \int_{1}^{2} f(x) \, dx = \int_{0}^{2} f(x) \, dx - \int_{0}^{1} f(x) \, dx \] Calculating \( \int_{0}^{1} f(x) \, dx \): \[ \int_{0}^{1} (4x^3 + 2x - 6) \, dx = \int_{0}^{1} 4x^3 \, dx + \int_{0}^{1} 2x \, dx - \int_{0}^{1} 6 \, dx \] Calculating each integral: 1. \(\int 4x^3 \, dx = x^4\), so: \[ \left[ x^4 \right]_{0}^{1} = 1 - 0 = 1 \] 2. \(\int 2x \, dx = x^2\), so: \[ \left[ x^2 \right]_{0}^{1} = 1 - 0 = 1 \] 3. \(\int 6 \, dx = 6x\), so: \[ \left[ 6x \right]_{0}^{1} = 6(1) - 6(0) = 6 \] Putting it all together: \[ \int_{0}^{1} f(x) \, dx = 1 + 1 - 6 = -4 \] Thus, \[ \int_{1}^{2} f(x) \, dx = 8 - (-4) = 8 + 4 = 12 \] ### Step 4: Substitute back into the equation Now substituting back into our earlier equation: \[ \int_{0}^{30} f^{-1}(y) \, dy + 12 = 60 \] So, \[ \int_{0}^{30} f^{-1}(y) \, dy = 60 - 12 = 48 \] ### Final Calculation Finally, we add both integrals: \[ \int_{0}^{2} f(x) \, dx + \int_{0}^{30} f^{-1}(y) \, dy = 8 + 48 = 56 \] Thus, the final answer is: \[ \boxed{56} \]

To solve the problem, we need to find the value of \[ \int_{0}^{2} f(x) \, dx + \int_{0}^{30} f^{-1}(y) \, dy \] where \( f(x) = 4x^3 + 2x - 6 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+3x+4, then the value of int_(-1)^(1)f(x)dx+int_(0)^(4)f^(-1)(x)dx equals

If g(x) is the inverse of f(x) and f(x) has domain x in[2,7] where f(2)=3 and f(7)= 13 , then the value of (1)/(17)(int_(2)^(7)f(x)dx+int_(3)^(13)g(y)dy) is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let f: r in R be a contunuous function given be f(x+y)=f(x)+f(y)"for all " x,b y in R . If int_(0)^(2)f(x)dx=alpha,"then" int_(2)^(2)f(x)dx is equal to

if int_(0)^(1)f(x)dx=1 and f(2x)=2f(x) then 3int_(1)^(2)f(x)dx is equal to

CENGAGE-DEFINITE INTEGRATION -Exercise (Numerical)
  1. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is.

    Text Solution

    |

  2. Let f(x) be differentiate function symmetric about x=2, then the value...

    Text Solution

    |

  3. Let f:[0,oo)vecR be a continuous strictly increasing function, such th...

    Text Solution

    |

  4. If f is continuous function and F(x)=int0^x((2t+3)dotintt^2f(u)d u)dt ...

    Text Solution

    |

  5. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  6. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  7. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  8. If int0^oox^(2n+1)dote^(-xdx)=360 , then the value of n is

    Text Solution

    |

  9. Let f(x) be a derivable function satisfying f(x)=int0^x e^tsin(x-t)dt...

    Text Solution

    |

  10. Let f(x)=1/x^2 int0^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  11. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  12. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11))i se q u a lto

    Text Solution

    |

  13. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  14. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dxa n dK=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |

  15. The value of the definite integral int(2-1)^(sqrt(2)+1)(x^4+x^2+2)/((x...

    Text Solution

    |

  16. Consider a real valued continuous function f such that f(x)=sinx + int...

    Text Solution

    |

  17. Iff(x)=x+int0^1t(x+t)f(t)dt ,t h e nt h ev a l u eof(23)/2f(0) is ...

    Text Solution

    |

  18. Let y=f(x)=4x^(3)+2x-6, then the value of int(0)^(2)f(x)dx+int(0)^(30)...

    Text Solution

    |

  19. The value of int(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is .

    Text Solution

    |

  20. The value of int(0)^(1)cos^(-1)(x-x^(2))-sqrt((1-x^(2))(2x-x^(2)))dx i...

    Text Solution

    |