Home
Class 12
MATHS
The value of int(0)^(1)(8log(1+x))/(1+x^...

The value of `int_(0)^(1)(8log(1+x))/(1+x^(2))dx` is

A

`log 2`

B

`pi log 2`

C

`(pi)/8 log 2`

D

`(pi)/2 log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} \, dx \), we will follow these steps: ### Step 1: Substitution We will use the substitution \( x = \tan \theta \). Then, \( dx = \sec^2 \theta \, d\theta \). We also need to change the limits of integration: - When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). - When \( x = 1 \), \( \theta = \tan^{-1}(1) = \frac{\pi}{4} \). Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{8 \log(1 + \tan \theta)}{1 + \tan^2 \theta} \sec^2 \theta \, d\theta \] ### Step 2: Simplifying the Integral Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{4}} 8 \log(1 + \tan \theta) \, d\theta \] ### Step 3: Using Symmetry Property We can use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we can express \( I \) as: \[ I = \int_{0}^{\frac{\pi}{4}} 8 \log(1 + \tan(\frac{\pi}{4} - \theta)) \, d\theta \] Using the identity \( \tan(\frac{\pi}{4} - \theta) = \frac{1 - \tan \theta}{1 + \tan \theta} \), we find: \[ I = \int_{0}^{\frac{\pi}{4}} 8 \log\left(1 + \frac{1 - \tan \theta}{1 + \tan \theta}\right) \, d\theta \] ### Step 4: Simplifying the Logarithm This simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} 8 \log\left(\frac{2}{1 + \tan \theta}\right) \, d\theta \] This can be separated into two integrals: \[ I = \int_{0}^{\frac{\pi}{4}} 8 \log(2) \, d\theta - \int_{0}^{\frac{\pi}{4}} 8 \log(1 + \tan \theta) \, d\theta \] Let \( J = \int_{0}^{\frac{\pi}{4}} 8 \log(1 + \tan \theta) \, d\theta \). Then: \[ I = 8 \log(2) \cdot \frac{\pi}{4} - J \] Since \( I = J \), we can write: \[ I = 8 \log(2) \cdot \frac{\pi}{4} - I \] ### Step 5: Solving for I Adding \( I \) to both sides gives: \[ 2I = 8 \log(2) \cdot \frac{\pi}{4} \] Thus, \[ I = 4 \log(2) \cdot \frac{\pi}{4} = \pi \log(2) \] ### Final Answer The value of the integral is: \[ \boxed{\pi \log(2)} \]

To solve the integral \( I = \int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} \, dx \), we will follow these steps: ### Step 1: Substitution We will use the substitution \( x = \tan \theta \). Then, \( dx = \sec^2 \theta \, d\theta \). We also need to change the limits of integration: - When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). - When \( x = 1 \), \( \theta = \tan^{-1}(1) = \frac{\pi}{4} \). Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) (8 log(1+x))/(1+x^(2)) dx is

int_(0)^(1)(log(1+x))/(1+x^(2))dx

int_(0)^(1)(log(1-x))/(x)dx

int_(0)^(1)(log x)dx

int_(0)^(1)(log(1+x))/(1+x)dx

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1)log(3+x)dx

Evaluate int_(0)^(a)((log(1+ax))/(1+x^(2))dx)

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is