Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then g(x+...

If `g(x)=int_(0)^(x)cos^(4)t dt,` then `g(x+pi)` equals

A

`(g(x))/(g(pi))`

B

`g(x)+g(pi)`

C

`g(x)-g(pi)`

D

`g(x).g(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g(x + \pi) \) given that \[ g(x) = \int_0^x \cos^4 t \, dt. \] ### Step 1: Express \( g(x + \pi) \) We start by substituting \( x + \pi \) into the function \( g \): \[ g(x + \pi) = \int_0^{x + \pi} \cos^4 t \, dt. \] ### Step 2: Split the Integral We can split the integral from \( 0 \) to \( x + \pi \) into two parts: \[ g(x + \pi) = \int_0^{\pi} \cos^4 t \, dt + \int_{\pi}^{x + \pi} \cos^4 t \, dt. \] ### Step 3: Change of Variable in the Second Integral For the second integral, we can make a change of variable. Let \( u = t - \pi \). Then \( dt = du \) and when \( t = \pi \), \( u = 0 \), and when \( t = x + \pi \), \( u = x \). Thus, we have: \[ \int_{\pi}^{x + \pi} \cos^4 t \, dt = \int_0^x \cos^4(u + \pi) \, du. \] ### Step 4: Simplify \( \cos^4(u + \pi) \) Using the property of cosine, we know that: \[ \cos(u + \pi) = -\cos u. \] Therefore, \[ \cos^4(u + \pi) = (-\cos u)^4 = \cos^4 u. \] ### Step 5: Substitute Back Now substituting back into the integral, we get: \[ \int_{\pi}^{x + \pi} \cos^4 t \, dt = \int_0^x \cos^4 u \, du = g(x). \] ### Step 6: Combine the Results Putting it all together, we have: \[ g(x + \pi) = \int_0^{\pi} \cos^4 t \, dt + g(x). \] ### Step 7: Final Expression Thus, the final expression for \( g(x + \pi) \) is: \[ g(x + \pi) = g(x) + \int_0^{\pi} \cos^4 t \, dt. \]

To solve the problem, we need to find \( g(x + \pi) \) given that \[ g(x) = \int_0^x \cos^4 t \, dt. \] ### Step 1: Express \( g(x + \pi) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

STATEMENT-1 : If g(x)=int_(0)^(x)cos^(4)t dt then g(x+pi) is equal to g(x)+g(pi) STATEMENT-2 : If {x} represents the fractional part of x then int_(0)^(100){sqrt(x)} is equal to (2000)/(3) STATEMENT-3 : The value of int_(-(1)/(2))^((1)/(2))(alphalog((1+x)/(1-x))+beta)dx depends on the value of beta .

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals

If g(x)=int_0^x cos4t\ dt ,\ t h e n\ g(x+pi) equals a. g(x)-g(pi) b. \ g(x)dotg(pi) c. (g(x))/(g(pi)) d. g(x)+g(pi)

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a)g(x)+g(pi) (b) g(x)-g(pi) (c)g(x)g(pi) (d) (g(x))/(g(pi))