Home
Class 12
MATHS
Statement I: The value of the integral i...

Statement I: The value of the integral `int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))` is equal to `(pi)/6`.
Statement II: `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

Statement I is true, statement II is true, statement II is a correct explanation for statement I

B

Statement I is true, statement II is true, statement II is a not a correct explanation for statement I

C

Statement I is true, statement II is false

D

Statement I is false, statement II is true

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))`………..i
`I=int_(pi//6)^(pi//3) (dx)/(1+sqrt(cotx))=int_(pi//6)^(pi//3)(sqrt(tanx)dx)/(sqrt(tanx)+1)`………..ii
Adding i and ii
`implies2I=int_(pi//6)^(pi//3) 1 dximplies2I=(pi)/3-(pi)/6`
`implies2I=(pi)/6impliesI=(pi)/12`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Statement - I : The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 . Statement - II : int_a^bf(x)dx=int_a^bf(a+b-x)dxdot (1) Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement -I is False; Statement -II is True (4) Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(pi//6)^(pi//3) sin(3x)dx=

The integral int_((pi)/(6))^((5 pi)/(6))(dx)/(1+cos x) is equal to