Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^(2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx` equals

A

`pi-4`

B

`(2pi)/3-4-sqrt(3)`

C

`4sqrt(3)-4`

D

`4sqrt(3)-4-(pi)/3`

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx`
`=int_(0)^(x)|1-2"sin"x/2|dx`
`=int_(0)^(pi//3)|1-2"sin"x/2|dx`
`=int_(0)^(pi//3) (1-2"sin"x/2)dx+int_(pi//3)^(pi)(2"sin"x/2-1)dx`
`=(x+4"cos"x/2)|._(0)^(pi//3)+(-4"cos"x/2-x)|_(pi//3)^(pi)`
`=4sqrt(3)-4-(pi)/3`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The integral int_(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is equal to

The integral int_(pi)^(0)sqrt(1+4"sin"^(2)(x)/(2)-4 "sin"(x)/(2))dx equals ,

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-2sin((x)/(2)))dx

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

int_(0)^(pi//4)sqrt((1-sin2x)/(1+sin 2x))dx=

The value of the definite integral int_(0)^((pi)/(2))((1+sin3x)/(1+2sin x))dx equals to