Home
Class 12
MATHS
The integral int(2)^(4)(logx^(2))/(logx^...

The integral `int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx` is equal to

A

`2`

B

`4`

C

`1`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))dx`
`I=2/2 int_(2)^(4)(log|x|)/(log|x|+log||6-x|)dx` ……….i
`I=int_(2)^(4)(log|6-x|)/(log|6-x|+log|x|) dx{int_(a)^(b)f(x)dx=int_(1)^(b)f(a+b-x)dx}` ……ii
Adding i and ii
`2I=int_(2)^(4)(log|x|+log|6-x|)/(log|x|+log|6-x|)dx=int_(2)^(4)dx=2`
Hence `I=1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The integral int_(2)^(4)(log x^(2))/(log x^(2)+log(36-12x+x^(2)))dx is equal to: (1)2(2)4(3)1(4)6

The integral int_(2)^(4)(e^(x^(2)))/(e^(x^(2))+e^((36-12x+x^(2))))dx is equal to

int _(2) ^(4) (log x ^(2))/( log x ^(2) + log (36-12 x + x ^(2)) dx is

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

int_(1)^(e)((logx)^(2))/(x)dx=?

int_(1)^(x) (logx^(2))/x dx is equal to

int_(1)^(2)(dx)/(x(1+logx)^(2))

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

int((logx)^(2))/(x)dx.