Home
Class 12
MATHS
lim(n -> oo) (((n+1)(n+2)(n+3).......3n)...

`lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)`is equal to

A

`27/(e^(2)0`

B

`9/(e^(2))`

C

`3log3-2`

D

`18/e^(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

`L=int_(nto oo) (((n+1)(n+2)……….(n+2n))/(n^(2n)))^(1//n)`
`:. log_(e)L=1/n(lim_(nto oo) sum_(r=1)^(2n)log(1+4/n))`
`:.log_(e)L=int_(0)^(2)log(1+x)dx`
`:.log_(e)L(xlog(1+x))_(0)^(2)-int_(0)^(2)x/(1+x)dx`
`:.log_(e)L=2log_(e)3-int_(0)^(2)(1-1/(1+x))dx`
`:. log_(e)L=2log3-(x-log(1+x))_(0)^(2)`
`=log_(e)L=2log3-(2-log3)`
`:.log_(e)L=3log3-2="log"27/(e^(2))`
`:.L=27/(e^(2))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

lim_ (n rarr oo) ((n-1) (n-2) (n-3)) / (n ^ (3))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_ (n rarr oo) ((n + 2)! + (n + 1)!) / ((n + 3)!)