Home
Class 12
MATHS
The Integral int(pi/4)^((3pi)/4)(dx)/(1+...

The Integral `int_(pi/4)^((3pi)/4)(dx)/(1+cosx)` is equal to: (2) (3) (4)

A

`-1`

B

`-2`

C

`2`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_((pi)/4)^((3pi)/4)(dx)/(1+cosx)`………………i
`impliesI=int_((pi)/4)^((3pi)/4)(dx)/(1-cosx)`…………..ii
Adding i and ii we get
`2I=int_((pi)/4)^((3pi)/4)2/(sin^(2)x)dx`
`impliesI=int_((pi)/4)^((3pi)/4)cosec^(2)dx`
`impliesI=-(cotx)_(pi//4)^(3pi/4)=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

The Integral int_((pi)/(4))^((3 pi)/(4))(dx)/(1+cos x) is equal to:

The Integral I=int_(pi/6)^((5pi)/6)(dx)/(1+cosx) is equal to:

int_(-pi//4)^(pi//4)(dx)/(1+ cos 2x) is equal to

int_(pi//4)^(3pi//4)(1)/(1+cosx)dx is equal to

int _(-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

int_(-(pi)/(4))^((pi)/(4))(dx)/(1+cos2x) is

The integral int_(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

int_(2pi)^((3pi)/2)cosx dx