Home
Class 12
MATHS
Solve the following systems of liner a e...

Solve the following systems of liner a equations by cramer rule . `(i)2x-y+3z=8` `-x+2y+z=4` `3x+y-4z=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations using Cramer's Rule, we will follow these steps: Given the equations: 1. \(2x - y + 3z = 8\) (Equation 1) 2. \(-x + 2y + z = 4\) (Equation 2) 3. \(3x + y - 4z = 0\) (Equation 3) ### Step 1: Write the equations in matrix form We can express the system of equations in the form of \(AX = B\), where: \[ A = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 8 \\ 4 \\ 0 \end{pmatrix} \] ### Step 2: Calculate the determinant \(D\) of matrix \(A\) To find \(D\), we calculate the determinant of matrix \(A\): \[ D = \begin{vmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{vmatrix} \] Calculating the determinant: \[ D = 2 \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} - (-1) \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} + 3 \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} = (2)(-4) - (1)(1) = -8 - 1 = -9\) 2. \(\begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = (-1)(-4) - (1)(3) = 4 - 3 = 1\) 3. \(\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1)(1) - (2)(3) = -1 - 6 = -7\) Substituting back into the determinant: \[ D = 2(-9) + 1 + 3(-7) = -18 + 1 - 21 = -38 \] ### Step 3: Calculate \(D_x\), \(D_y\), and \(D_z\) #### Calculate \(D_x\) Replace the first column of \(A\) with \(B\): \[ D_x = \begin{vmatrix} 8 & -1 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & -4 \end{vmatrix} \] Calculating \(D_x\): \[ D_x = 8 \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} - (-1) \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} + 3 \begin{vmatrix} 4 & 2 \\ 0 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} = -9 \) (calculated earlier) 2. \( \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} = (4)(-4) - (1)(0) = -16 \) 3. \( \begin{vmatrix} 4 & 2 \\ 0 & 1 \end{vmatrix} = (4)(1) - (2)(0) = 4 \) Substituting back into \(D_x\): \[ D_x = 8(-9) + 1(-16) + 3(4) = -72 - 16 + 12 = -76 \] #### Calculate \(D_y\) Replace the second column of \(A\) with \(B\): \[ D_y = \begin{vmatrix} 2 & 8 & 3 \\ -1 & 4 & 1 \\ 3 & 0 & -4 \end{vmatrix} \] Calculating \(D_y\): \[ D_y = 2 \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} - 8 \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} + 3 \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} = -16 \) 2. \( \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = 1 \) (calculated earlier) 3. \( \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} = -12 \) Substituting back into \(D_y\): \[ D_y = 2(-16) - 8(1) + 3(-12) = -32 - 8 - 36 = -76 \] #### Calculate \(D_z\) Replace the third column of \(A\) with \(B\): \[ D_z = \begin{vmatrix} 2 & -1 & 8 \\ -1 & 2 & 4 \\ 3 & 1 & 0 \end{vmatrix} \] Calculating \(D_z\): \[ D_z = 2 \begin{vmatrix} 2 & 4 \\ 1 & 0 \end{vmatrix} - (-1) \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} + 8 \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 4 \\ 1 & 0 \end{vmatrix} = (2)(0) - (4)(1) = -4 \) 2. \( \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} = -12 \) (calculated earlier) 3. \( \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = -7 \) (calculated earlier) Substituting back into \(D_z\): \[ D_z = 2(-4) + 12 + 8(-7) = -8 + 12 - 56 = -52 \] ### Step 4: Calculate the values of \(x\), \(y\), and \(z\) Using Cramer's Rule: \[ x = \frac{D_x}{D} = \frac{-76}{-38} = 2 \] \[ y = \frac{D_y}{D} = \frac{-76}{-38} = 2 \] \[ z = \frac{D_z}{D} = \frac{-52}{-38} = \frac{26}{19} \] ### Final Solution The solution to the system of equations is: \[ x = 2, \quad y = 2, \quad z = \frac{26}{19} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-II|27 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-C|11 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations by Cramers rule: x+2y=1,\ \ \ 3x+y=4

Solve the following system of linear equations by Cramers rule: 2x-y=-2,\ \ \ 3x+4y=3

Solve the following system of linear equations by Cramers rule: x-2y=4,\ \ -3x+5y=-7

Solve the following system of equation by Cramer's rule. x+y=4 and 3x-2y=9

Solve the following system of linear equations by Cramers rule: 2x+3y=10 ,\ \ \ x+6y=4

Solve the following system of linear equations by Cramers rule: x+y=5,\ \ y+z=3,\ \ x+z=4

Solve the following system of linear equations by using the principle of matrix. 2x-y+3z=8 -x+2y+z=4 3x+y-4z=0

Solve the following system of linear equations by Cramers rule: 2y-3z=0,\ \ x+3y=-4,\ \ 3x+4y=3

Solve the following system of linear equations by Cramers rule: 2x-3y-4z=29 ,\ -2x+5y-z=-15 ,\ \ 3x-y+5z=-11

Solve the following system of linear equations by Cramers rule: x+y=1,\ \ \ x+z=-6,\ \ \ x-y-2z=3

RESONANCE-MATRICES & DETERMINANT-SECTION-D
  1. For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0....

    Text Solution

    |

  2. Find the total number of possible square matrix. A order 3 with all re...

    Text Solution

    |

  3. If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

    Text Solution

    |

  4. Apply Cramer's rule to solve the simultaneous equations. (i)x+2y+3z...

    Text Solution

    |

  5. Solve using Cramer's rule:(4)/(x+5)+(3)/(y+7)=-1&(6)/(x+5)-(6)/(y+5)=-...

    Text Solution

    |

  6. Find those values of c for which the equations: 2x+3y=3,(c+ 2)x + (c +...

    Text Solution

    |

  7. Solve the following systems of liner a equations by cramer rule . (i...

    Text Solution

    |

  8. . For what values of lambda and mu the system of equations x+y+z=6, x+...

    Text Solution

    |

  9. Determination the product [{:(,1,-1,1),(,1,-2,-2),(,2,1,3):}] [{:(,-4,...

    Text Solution

    |

  10. Compute A^(-1), if A=[{:(,3,-2,3),(,2,1,-1),(,4,-3,2):}]. Hence solve ...

    Text Solution

    |

  11. Show that following system of linear equations is inconsistent: 4x-...

    Text Solution

    |

  12. If A=[{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x...

    Text Solution

    |

  13. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  14. If the system of equations x + 2y + 3z = 4, x+ py+ 2z = 3, x+ 4y + z =...

    Text Solution

    |

  15. Let lambdaa n dalpha be real. Find the set of all values of lambda for...

    Text Solution

    |

  16. Let [{:(,a,o,b),(,1,e,1),(,c,o,d):}]=[{:(,0),(,0),(,0):}] where a,b,c,...

    Text Solution

    |

  17. if the system of equation ax+y+z=0, x+by=z=0,and x+y+cz=0 (a,b,c!=1) h...

    Text Solution

    |