Home
Class 12
MATHS
Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(...

Let `A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)]`
where V is the `(2xx1` identity matrix). Then the product of all elements of matrix V is

A

2.72

B

1

C

3

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first compute the powers of the matrix \( A \), then we will evaluate the expression \( A^8 + A^6 + A^2 + I \), and finally, we will find the matrix \( V \) and calculate the product of its elements. ### Step 1: Compute \( A^2 \) Given the matrix: \[ A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \] We calculate \( A^2 \) as follows: \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + 1 \cdot 2 = 2 \) - First row, second column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, first column: \( 2 \cdot 0 + 0 \cdot 2 = 0 \) - Second row, second column: \( 2 \cdot 1 + 0 \cdot 0 = 2 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I \] ### Step 2: Compute \( A^4 \) Now, we compute \( A^4 \): \[ A^4 = A^2 \cdot A^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + 0 \cdot 0 = 4 \) - First row, second column: \( 2 \cdot 0 + 0 \cdot 2 = 0 \) - Second row, first column: \( 0 \cdot 2 + 2 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 2 \cdot 2 = 4 \) Thus, \[ A^4 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 4I \] ### Step 3: Compute \( A^8 \) Next, we compute \( A^8 \): \[ A^8 = A^4 \cdot A^4 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 4 \cdot 4 + 0 \cdot 0 = 16 \) - First row, second column: \( 4 \cdot 0 + 0 \cdot 4 = 0 \) - Second row, first column: \( 0 \cdot 4 + 4 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 4 \cdot 4 = 16 \) Thus, \[ A^8 = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} = 16I \] ### Step 4: Compute \( A^6 \) Now, we compute \( A^6 \): \[ A^6 = A^4 \cdot A^2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 4 \cdot 2 + 0 \cdot 0 = 8 \) - First row, second column: \( 4 \cdot 0 + 0 \cdot 2 = 0 \) - Second row, first column: \( 0 \cdot 2 + 4 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 4 \cdot 2 = 8 \) Thus, \[ A^6 = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8I \] ### Step 5: Compute \( A^8 + A^6 + A^2 + I \) Now, we can compute: \[ A^8 + A^6 + A^2 + I = 16I + 8I + 2I + I \] Calculating the sum: \[ = (16 + 8 + 2 + 1)I = 27I \] ### Step 6: Solve for \( V \) We have the equation: \[ 27I \cdot V = \begin{pmatrix} 32 \\ 62 \end{pmatrix} \] This implies: \[ 27V = \begin{pmatrix} 32 \\ 62 \end{pmatrix} \] Thus, \[ V = \begin{pmatrix} \frac{32}{27} \\ \frac{62}{27} \end{pmatrix} \] ### Step 7: Calculate the product of elements of \( V \) The product of the elements of \( V \) is: \[ \text{Product} = \left(\frac{32}{27}\right) \cdot \left(\frac{62}{27}\right) = \frac{32 \cdot 62}{27^2} = \frac{1984}{729} \] ### Final Answer The product of all elements of matrix \( V \) is: \[ \frac{1984}{729} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

A=[[0,13,0]] and A^(8)+A^(6)+A^(2)+IV=[[011]] (where Iis the 2xx2 identity matrix ), then the product of all elements of matrix V is

A=[[0,1],[3,0]]" and let "BV=[[0],[11]]" Where "B=A^(8)+A^6+A^(4)+A^(2)+I," (Where "I" is the "2times2" identity matrix) then the product of all elements of matrix "V" is "

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

If A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[11]], where V is a vertical vector and I is the 2xx2 identity matrix and if lambda is sum of all elements of vertical vector V , the value of 11 lambda is

If A=[(x,1),(1,0)] and A^(2) is the identity matrix, then x is equal to

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

Let B=A^(3)-2A^(2)+3A-I where l is an identity matrix and A=[(1,3,2),(2,0,3),(1,-1,1)] then the transpose of matrix B is equal to

Let A be a 2xx2 matrix with non zero entries and let A^(2)=I , where I is 2xx2 identity matrix. Define Tr(A)= sum of diagonal elemets of A and |A|= determinant of matrix A. Statement 1: Tr(A)=0 Statement 2: |A|=1 .

RESONANCE-MATRICES & DETERMINANT-PART-II
  1. If A is skew-symmetric matrix, then trace of A is

    Text Solution

    |

  2. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  3. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where V i...

    Text Solution

    |

  4. Let A=[{:(,3x^(2)),(,1),(,6x):}], B=[a,b,c] and C=[{:(,(x+2)^(2),5x^(2...

    Text Solution

    |

  5. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  6. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  7. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  8. If |{:(,b+c,c+a,a+b),(,c+a,a+b,b+c),(,a+b,b+c,c+a):}|ge 0, "where a ,b...

    Text Solution

    |

  9. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|a1a2a3 5 4a6a7a8a9|...

    Text Solution

    |

  10. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  11. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  12. se A is a matrix such that A^2 =A and (I + A)^6 =1+ KA, then k is

    Text Solution

    |

  13. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  14. If f(x)=|{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x)...

    Text Solution

    |

  15. If Un=|(n,1,5),(n^2, 2N+1,2N+1),(n^3,3N^2,3N+1)|, then sum(n=1)^NUn is...

    Text Solution

    |

  16. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  17. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  18. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  19. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  20. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |