Home
Class 12
MATHS
Statement I If A=[(a^2+x^2,ab-cx,ac+bx...

Statement I If `A=[(a^2+x^2,ab-cx,ac+bx),(ab+cx,b^2+x^2,bc-ax),(ac-bx,bc+ax,c^2+x^2)] and B[(x,c,-b),(-c,x,a),(b,-a,x)]`, then `|A|=|B|^2` Statement II `A^c` is cofactor of a square matrix A of order n, then `|A^c|=|A|^(n-1)`

A

Statement-1is true, Statement-2 is true and Statement-2 is correct explantion for Statement-1.

B

Statement-1 is true, Statement-2 is true and Statement-2 is not correct explantion for Statement-1.

C

Statement-1 is true, Statement-2 is false.

D

Statement-1 is false, Statement-2 is false.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-II|27 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by