Home
Class 12
MATHS
If |{:(,b+c,c+a,a+b),(,c+a,a+b,b+c),(,a+...

If `|{:(,b+c,c+a,a+b),(,c+a,a+b,b+c),(,a+b,b+c,c+a):}|ge 0, "where a ,b,c,"inR,"then"(a+b)/(c)"is"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] and determine the condition under which \( \frac{a+b}{c} \) is evaluated. ### Step 1: Apply Row Operation We can simplify the determinant by adding all three rows together and replacing the first row with this sum. \[ R_1 \rightarrow R_1 + R_2 + R_3 \] This gives us: \[ D = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] ### Step 2: Factor Out Common Terms Now, we can factor out \( 2(a+b+c) \) from the first row: \[ D = 2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \] ### Step 3: Apply Column Operations Next, we can simplify the determinant further by performing column operations. We will subtract the first column from the second and third columns: \[ C_2 \rightarrow C_2 - C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - C_1 \] This results in: \[ D = 2(a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ c+a - (b+c) & (a+b) - (b+c) & (b+c) - (c+a) \\ (a+b) - (b+c) & (b+c) - (c+a) & (c+a) - (a+b) \end{vmatrix} \] This simplifies to: \[ D = 2(a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ -a & a-b & b-c \\ b-a & c-b & a-c \end{vmatrix} \] ### Step 4: Evaluate the Determinant The determinant now can be evaluated as: \[ D = 2(a+b+c) \cdot 1 \cdot \begin{vmatrix} -a & a-b \\ b-a & c-b \end{vmatrix} \] Calculating this 2x2 determinant: \[ D = 2(a+b+c) \left[ -a(c-b) - (a-b)(b-a) \right] \] ### Step 5: Set the Determinant Greater Than or Equal to Zero Now we need to ensure that \( D \geq 0 \). This leads us to the conclusion that: \[ -a(c-b) - (a-b)(b-a) \geq 0 \] ### Step 6: Analyze the Condition The condition implies that \( a, b, c \) must be equal for the determinant to be non-negative. Thus, we can set \( a = b = c \). ### Step 7: Calculate \( \frac{a+b}{c} \) If \( a = b = c \), then: \[ \frac{a+b}{c} = \frac{a+a}{a} = \frac{2a}{a} = 2 \] ### Final Answer Thus, we conclude that: \[ \frac{a+b}{c} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

The value of Delta = |(b -c,c -a,a -b),(c -a,a -b,b -c),(a -b,b -c,c -a)| is

If |(b +c,c +a,a +b),(a +b,b +c,c +a),(c +a,a +b,b +c)| = k |(a,b,c),(c,a,b),(b,c,a)| , then the value of k, is

The value of |{:(a- b, b- c, c - a),(b-c,c-a,a-b),(c-a,a-b,b-c):}| =

|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

RESONANCE-MATRICES & DETERMINANT-PART-II
  1. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where V i...

    Text Solution

    |

  2. Let A=[{:(,3x^(2)),(,1),(,6x):}], B=[a,b,c] and C=[{:(,(x+2)^(2),5x^(2...

    Text Solution

    |

  3. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  6. If |{:(,b+c,c+a,a+b),(,c+a,a+b,b+c),(,a+b,b+c,c+a):}|ge 0, "where a ,b...

    Text Solution

    |

  7. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|a1a2a3 5 4a6a7a8a9|...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. se A is a matrix such that A^2 =A and (I + A)^6 =1+ KA, then k is

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. If f(x)=|{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x)...

    Text Solution

    |

  13. If Un=|(n,1,5),(n^2, 2N+1,2N+1),(n^3,3N^2,3N+1)|, then sum(n=1)^NUn is...

    Text Solution

    |

  14. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |