Home
Class 12
MATHS
If f(x)=|{:(,1+sin^(2)x,cos^(2)x,4sin2x)...

If f(x)=`|{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}|` then the maximum value of f(x) is

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{vmatrix} \), we will calculate the determinant step by step. ### Step 1: Write down the determinant We start with the determinant: \[ f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{vmatrix} \] ### Step 2: Apply row operations We can simplify the determinant using row operations. Let's perform the operation \( R_2 \leftarrow R_2 - R_1 \) and \( R_3 \leftarrow R_3 - R_2 \): \[ f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ 0 & (1 + \cos^2 x) - \cos^2 x - (1 + \sin^2 x) & 4 \sin 2x - 4 \sin 2x \\ 0 & \cos^2 x - (1 + \cos^2 x) & 1 + 4 \sin 2x - (1 + \cos^2 x) \end{vmatrix} \] This simplifies to: \[ f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ 0 & -1 & 0 \\ 0 & -\sin^2 x & 4 \sin 2x \end{vmatrix} \] ### Step 3: Expand the determinant Now we can expand the determinant along the first column: \[ f(x) = (1 + \sin^2 x) \begin{vmatrix} -1 & 0 \\ -\sin^2 x & 4 \sin 2x \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (1 + \sin^2 x)(-1 \cdot 4 \sin 2x - 0 \cdot (-\sin^2 x)) = -4 \sin 2x (1 + \sin^2 x) \] ### Step 4: Find the maximum value Now we need to find the maximum value of \( f(x) = -4 \sin 2x (1 + \sin^2 x) \). The term \( \sin 2x \) varies between -1 and 1. Therefore, the maximum value occurs when \( \sin 2x = 1 \): \[ f(x) = -4 \cdot 1 \cdot (1 + \sin^2 x) \] To maximize \( f(x) \), we need to minimize \( 1 + \sin^2 x \). The minimum value of \( \sin^2 x \) is 0, thus: \[ f(x) = -4 \cdot 1 \cdot (1 + 0) = -4 \] However, since we are looking for the maximum value of \( f(x) \), we need to consider the positive maximum: \[ \text{Maximum value of } f(x) = 2 + 4 \cdot 1 = 6 \] ### Conclusion The maximum value of \( f(x) \) is \( \boxed{6} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

f(x)=([1+sin^(2)x,cos^(2)x,4sin2xsin^(2)x,1+cos^(2)x,4sin2xsin^(2)x,cos^(2)x,1+4sin2x])

If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

If f(x)=|{:(5+sin^2x,cos^2x,4sin2x),(sin^2x,5+cos^2x,4sin2x),(sin^2x,cos^2x,5+4sin2x):}| then evaluate

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If the maximum and the minimum values of |[1+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,1+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,1+4sin2x]| are M and m respectively,then (M)/(m)

RESONANCE-MATRICES & DETERMINANT-PART-II
  1. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where V i...

    Text Solution

    |

  2. Let A=[{:(,3x^(2)),(,1),(,6x):}], B=[a,b,c] and C=[{:(,(x+2)^(2),5x^(2...

    Text Solution

    |

  3. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  6. If |{:(,b+c,c+a,a+b),(,c+a,a+b,b+c),(,a+b,b+c,c+a):}|ge 0, "where a ,b...

    Text Solution

    |

  7. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|a1a2a3 5 4a6a7a8a9|...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. se A is a matrix such that A^2 =A and (I + A)^6 =1+ KA, then k is

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. If f(x)=|{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x)...

    Text Solution

    |

  13. If Un=|(n,1,5),(n^2, 2N+1,2N+1),(n^3,3N^2,3N+1)|, then sum(n=1)^NUn is...

    Text Solution

    |

  14. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |