Home
Class 12
MATHS
A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4...

`A_(1)=[a_(1)]`
`A_(2)=[{:(,a_(2),a_(3)),(,a_(4),a_(5)):}]`
`A_(3)=[{:(,a_(6),a_(7),a_(8)),(,a_(9),a_(10),a_(11)),(,a_(12),a_(13),a_(14)):}]......A_(n)=[.......]`
Where, `a_(r)=[log_(2)r]([.])` denotes greatest integer). Then trace of `A_(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the trace of the matrix \( A_{10} \), we will follow these steps: ### Step 1: Understand the structure of the matrices The matrices are defined as follows: - \( A_1 = [a_1] \) is a \( 1 \times 1 \) matrix. - \( A_2 = \begin{bmatrix} a_2 & a_3 \\ a_4 & a_5 \end{bmatrix} \) is a \( 2 \times 2 \) matrix. - \( A_3 = \begin{bmatrix} a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} \\ a_{12} & a_{13} & a_{14} \end{bmatrix} \) is a \( 3 \times 3 \) matrix. - Continuing this pattern, \( A_n \) is an \( n \times n \) matrix. ### Step 2: Determine the number of elements in \( A_9 \) The total number of elements in \( A_9 \) can be calculated using the formula for the sum of squares: \[ \text{Total elements} = 1^2 + 2^2 + 3^2 + \ldots + 9^2 = \frac{n(n + 1)(2n + 1)}{6} \] For \( n = 9 \): \[ \text{Total elements} = \frac{9 \cdot 10 \cdot 19}{6} = 285 \] ### Step 3: Identify the elements of \( A_{10} \) Since \( A_9 \) covers elements \( a_1 \) to \( a_{285} \), the elements of \( A_{10} \) will be: \[ a_{286}, a_{287}, \ldots, a_{295} \] This gives us a \( 10 \times 10 \) matrix \( A_{10} \). ### Step 4: Find the diagonal elements of \( A_{10} \) The diagonal elements of \( A_{10} \) are: \[ a_{286}, a_{297}, a_{308}, \ldots, a_{385} \] These correspond to the indices \( 286, 297, 308, \ldots, 385 \). ### Step 5: Calculate the trace of \( A_{10} \) The trace of a matrix is the sum of its diagonal elements: \[ \text{Trace}(A_{10}) = a_{286} + a_{297} + a_{308} + \ldots + a_{385} \] ### Step 6: Evaluate \( a_r \) Given \( a_r = \lfloor \log_2 r \rfloor \), we need to evaluate: - For \( r = 286 \): \( \lfloor \log_2 286 \rfloor = 8 \) - For \( r = 297 \): \( \lfloor \log_2 297 \rfloor = 8 \) - For \( r = 308 \): \( \lfloor \log_2 308 \rfloor = 8 \) - Continuing this, we find that all values from \( 286 \) to \( 295 \) yield \( 8 \). ### Step 7: Sum the contributions to the trace Since there are \( 10 \) diagonal elements, all equal to \( 8 \): \[ \text{Trace}(A_{10}) = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 80 \] ### Final Answer The trace of \( A_{10} \) is \( 80 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

If a_(1),a_(2),a_(3),54,a_(6),a_(7),a_(8),a_(9) are in H.P.and D=det[[5,a_(2),a_(3)5,4,a_(6)a_(7),a_(8),a_(9)]], l.] represents the greatest integer function

For the A.P., a_(1),a_(2),a_(3) ,…………… if (a_(4))/(a_(7))=2/3 , find (a_(6))/(a_(8))

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

RESONANCE-MATRICES & DETERMINANT-PART-II
  1. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where V i...

    Text Solution

    |

  2. Let A=[{:(,3x^(2)),(,1),(,6x):}], B=[a,b,c] and C=[{:(,(x+2)^(2),5x^(2...

    Text Solution

    |

  3. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  4. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  5. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  6. If |{:(,b+c,c+a,a+b),(,c+a,a+b,b+c),(,a+b,b+c,c+a):}|ge 0, "where a ,b...

    Text Solution

    |

  7. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|a1a2a3 5 4a6a7a8a9|...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. se A is a matrix such that A^2 =A and (I + A)^6 =1+ KA, then k is

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. If f(x)=|{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x)...

    Text Solution

    |

  13. If Un=|(n,1,5),(n^2, 2N+1,2N+1),(n^3,3N^2,3N+1)|, then sum(n=1)^NUn is...

    Text Solution

    |

  14. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |