Home
Class 12
MATHS
Some special square matrices are defined...

Some special square matrices are defined as follows. Nilpotent matrix: A square matrix. A is said to be nilpotent (of order 2)if, `A^(2)=O`. A square matrix is said to be nilpotent of order p, if p is the least positive integer such that `A^(p)=O`.
Idempotent matrix: A square matrix A is said to be idempotent if, `A^(2)=A`.
`e.g.[{:(,1,0),(,0,1):}]` is an idempotent matrix.
Involutory matrix: A square A is said to be involutary if `A^(2)=I`, `I `being the identity matrix.
`e.g..A=[{:(,1,0),(,0,1):}]` is an involutary matrix.
Orthogonal matrix: A square matrix A is said to be an orthogonal matrix if `A' A=I=A A'`
If `[{:(,0,2beta,gamma),(,alpha,beta,-gamma),(,alpha,-beta,gamma):}]` is orthogonal, then

A

`alpha=pm(1)/(sqrt2)`

B

`beta=pm(1)/(sqrt6)`

C

`gamma=pm(1)/(sqrt3)`

D

all of those

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of the parameters \( \alpha \), \( \beta \), and \( \gamma \) given that the matrix \[ A = \begin{pmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{pmatrix} \] is orthogonal. This means that \( A^T A = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. ### Step 1: Calculate \( A^T \) The transpose of matrix \( A \) is given by: \[ A^T = \begin{pmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{pmatrix} \] ### Step 2: Compute \( A^T A \) Now, we compute the product \( A^T A \): \[ A^T A = \begin{pmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{pmatrix} \begin{pmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{pmatrix} \] Calculating the entries of \( A^T A \): 1. First row, first column: \[ 0 \cdot 0 + \alpha \cdot \alpha + \alpha \cdot \alpha = 2\alpha^2 \] 2. First row, second column: \[ 0 \cdot 2\beta + \alpha \cdot \beta + \alpha \cdot -\beta = 0 \] 3. First row, third column: \[ 0 \cdot \gamma + \alpha \cdot -\gamma + \alpha \cdot \gamma = 0 \] 4. Second row, first column: \[ 2\beta \cdot 0 + \beta \cdot \alpha + -\beta \cdot \alpha = 0 \] 5. Second row, second column: \[ 2\beta \cdot 2\beta + \beta \cdot \beta + -\beta \cdot -\beta = 4\beta^2 + \beta^2 + \beta^2 = 6\beta^2 \] 6. Second row, third column: \[ 2\beta \cdot \gamma + \beta \cdot -\gamma + -\beta \cdot \gamma = 0 \] 7. Third row, first column: \[ \gamma \cdot 0 + -\gamma \cdot \alpha + \gamma \cdot \alpha = 0 \] 8. Third row, second column: \[ \gamma \cdot 2\beta + -\gamma \cdot \beta + \gamma \cdot -\beta = 0 \] 9. Third row, third column: \[ \gamma \cdot \gamma + -\gamma \cdot -\gamma + \gamma \cdot \gamma = 3\gamma^2 \] Thus, we have: \[ A^T A = \begin{pmatrix} 2\alpha^2 & 0 & 0 \\ 0 & 6\beta^2 & 0 \\ 0 & 0 & 3\gamma^2 \end{pmatrix} \] ### Step 3: Set \( A^T A = I \) Setting \( A^T A = I \), we have: \[ \begin{pmatrix} 2\alpha^2 & 0 & 0 \\ 0 & 6\beta^2 & 0 \\ 0 & 0 & 3\gamma^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( 2\alpha^2 = 1 \) → \( \alpha^2 = \frac{1}{2} \) → \( \alpha = \pm \frac{1}{\sqrt{2}} \) 2. \( 6\beta^2 = 1 \) → \( \beta^2 = \frac{1}{6} \) → \( \beta = \pm \frac{1}{\sqrt{6}} \) 3. \( 3\gamma^2 = 1 \) → \( \gamma^2 = \frac{1}{3} \) → \( \gamma = \pm \frac{1}{\sqrt{3}} \) ### Conclusion The values of \( \alpha \), \( \beta \), and \( \gamma \) are: - \( \alpha = \pm \frac{1}{\sqrt{2}} \) - \( \beta = \pm \frac{1}{\sqrt{6}} \) - \( \gamma = \pm \frac{1}{\sqrt{3}} \) Thus, the correct option is D: All of the above.
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-II:|28 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-2|20 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Nilpotent Matrix

Idempotent Matrix

A square matrix A is said to be symmetric matrix if

A square matrix A is said to be symmetric matrix if

When a square matrix is said to be invertible

A square matrix A is said skew - symmetric matrix if

Inverse OF square matrix || Orthogonal matrix

If |A|!=0 then A Square Matrix A is said to be