Home
Class 12
MATHS
The value of lim(x->0)((sinx-tanx)^2-(1-...

The value of `lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x)` equal to :

A

0

B

1

C

2

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(-1)x-sin^(-1)x)/(sin^(3)x), is equal to

lim_(x rarr0)(sin2x+tan3x)/(4x-sin5x)

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

lim_(x rarr0)(((sinx)(1-cos x))-(x^(3)/2)+(x^(5)/8))/x^(7)

The value of lim_(x rarr oo)(2x-3sin^(-1)x)/(3x+2tan^(-1)x) equal to

value of lim_(x rarr0)((1-cos2x)sin11x)/(x^(2)sin7x) is

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to