Home
Class 12
MATHS
Let a =lim (xto0) (ln (cos 2x ))/( 3x ^(...

Let `a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x).` Then a,b,c satisfy :

A

`a lt b lt c`

B

`b lt c lt a`

C

`a lt c lt b`

D

`b lt a lt c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limits \( a \), \( b \), and \( c \) given in the question, we will evaluate each limit step by step. ### Step 1: Evaluate \( a = \lim_{x \to 0} \frac{\ln(\cos(2x))}{3x^2} \) 1. **Use the Taylor series expansion for \(\cos(2x)\)**: \[ \cos(2x) \approx 1 - 2x^2 \quad \text{as } x \to 0 \] Therefore, \[ \ln(\cos(2x)) \approx \ln(1 - 2x^2) \approx -2x^2 \quad \text{(using } \ln(1 + u) \approx u \text{ for small } u\text{)} \] 2. **Substituting back into the limit**: \[ a = \lim_{x \to 0} \frac{-2x^2}{3x^2} = \lim_{x \to 0} \frac{-2}{3} = -\frac{2}{3} \] ### Step 2: Evaluate \( b = \lim_{x \to 0} \frac{\sin^2(2x)}{x(1 - e^x)} \) 1. **Use the Taylor series for \(\sin(2x)\)**: \[ \sin(2x) \approx 2x \quad \text{as } x \to 0 \] Therefore, \[ \sin^2(2x) \approx (2x)^2 = 4x^2 \] 2. **Use the Taylor series for \( e^x \)**: \[ e^x \approx 1 + x \quad \text{as } x \to 0 \implies 1 - e^x \approx -x \] 3. **Substituting back into the limit**: \[ b = \lim_{x \to 0} \frac{4x^2}{x(-x)} = \lim_{x \to 0} \frac{4x^2}{-x^2} = \lim_{x \to 0} -4 = 4 \] ### Step 3: Evaluate \( c = \lim_{x \to 1} \frac{\sqrt{x} - x}{\ln x} \) 1. **Rewrite \(\sqrt{x} - x\)**: \[ \sqrt{x} - x = \frac{(\sqrt{x} - x)(\sqrt{x} + x)}{\sqrt{x} + x} = \frac{x - x^2}{\sqrt{x} + x} = \frac{x(1 - x)}{\sqrt{x} + x} \] 2. **Now substitute into the limit**: \[ c = \lim_{x \to 1} \frac{x(1 - x)}{\ln x (\sqrt{x} + x)} \] 3. **As \( x \to 1\)**, both the numerator and denominator approach 0, so we apply L'Hôpital's Rule: - Differentiate the numerator: \( \frac{d}{dx}(x(1 - x)) = 1 - 2x \) - Differentiate the denominator: \( \frac{d}{dx}(\ln x(\sqrt{x} + x)) = \frac{1}{x}(\sqrt{x} + x) + \ln x \cdot \frac{1}{2\sqrt{x}} + \ln x \) 4. **Evaluate the limit using L'Hôpital's Rule**: \[ c = \lim_{x \to 1} \frac{1 - 2x}{\frac{1}{x}(\sqrt{x} + x) + \ln x \cdot \frac{1}{2\sqrt{x}} + \ln x} \] After evaluating, we find: \[ c = -\frac{1}{2} \] ### Summary of Results - \( a = -\frac{2}{3} \) - \( b = 4 \) - \( c = -\frac{1}{2} \) ### Final Comparison Now we compare \( a, b, c \): - \( a < c < b \) ### Conclusion Thus, the values of \( a, b, c \) satisfy \( a < c < b \).
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

a=lim_(x rarr0)(ln(cos2x))/(3x^(2)),b=lim_(x rarr0)(sin^(2)2x)/(x(1-e^(x))),c=lim_(x rarr1)(sqrt(x)-x)/(ln x)

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

lim_(xto0)(sin(picos^(2)x))/(x^(2)) is equal to

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

lim_(xto0)(sin2x)/(1-sqrt(1-x))

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim _(xto0) (sin (pi cos ^(2) (tan (sin x ))))/(x ^(2))=

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is