Home
Class 12
MATHS
If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3...

If `f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2)))` then `lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2` is :

A

`(3)/(2 (1+a^(2)))`

B

`3/2`

C

`(-3)/(2 (1+a^(2)))`

D

`-3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by the functions \( f(x) \) and \( g(x) \), we will follow these steps: ### Step 1: Define the functions We have: \[ f(x) = \cot^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \] \[ g(x) = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 2: Simplify \( f(x) \) Using the identity for the tangent of a triple angle, we can rewrite \( f(x) \): \[ \frac{3x - x^3}{1 - 3x^2} = \tan(3\theta) \quad \text{where } \theta = \tan^{-1}(x) \] Thus, we have: \[ f(x) = \cot^{-1}(\tan(3\theta)) = \frac{\pi}{2} - 3\theta = \frac{\pi}{2} - 3\tan^{-1}(x) \] ### Step 3: Simplify \( g(x) \) For \( g(x) \), we can use the identity for cosine: \[ \frac{1 - x^2}{1 + x^2} = \cos(2\theta) \quad \text{where } \theta = \tan^{-1}(x) \] Thus, we have: \[ g(x) = \cos^{-1}(\cos(2\theta)) = 2\theta = 2\tan^{-1}(x) \] ### Step 4: Find the limit We need to compute: \[ \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} \] Using L'Hôpital's Rule, we differentiate the numerator and denominator: \[ f'(x) = -3 \cdot \frac{1}{1 + x^2} \] \[ g'(x) = \frac{2}{1 + x^2} \] ### Step 5: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{-3/(1 + a^2)}{2/(1 + a^2)} = \frac{-3}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cos +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4), and h(x)=-(2(2x+1))/(x^(2)+x-12) then lim_(x rarr3)[f(x)+g(x)+h(x)] is (a) -2(b)-1 (c) -(2)/(7) (d) 0