Home
Class 12
MATHS
lim (xto 1 ^(-)) (e ^({x}) - {x} -1)/( {...

`lim _(xto 1 ^(-)) (e ^({x}) - {x} -1)/( {x}^(2))` equal, where {.} is fractional part function and I is aan integer, to :

A

`I/2`

B

`e -2`

C

`I `

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr I^(-))((e^(x)-{x}-1)/({x}^(2))) equals,where {:} is

lim_(x rarr0^(-)){x} is equal to (where { . } is fractional part function):

If x in[2,3) ,then {x} equals, where {.} denotes fractional part function.

Consider the function f (x)={{:(max (x, (1)/(x))",", If x ne0),(min (x, (1)/(x)),),(1"," , if x=0):}, then lim _(xto 0^(-)) {f(x)} + lim _(xto 1 ^(-)) {f (x)}+ lim _(x to 1 ^(-)) [f (x)]= (where {.} denotes fraction part function and [.] denotes greatest integer function)

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

lim_(x rarr[a])(e^(x)-{x}-1)/({x}^(2)) Where {x} denotes the fractional part of x and [x] denotes the integral part of a.

lim_(x rarr2^(+))((2{x}-4)/([x]-3)) is equal to,where {.} and [.] represents fractional part of x and greatest integer function

[lim_(x rarr5)(|x^(2)-9x+20|)/({x}({x}-1))" is (where "{.}" denotes "],[" fractional part function) "]

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function