Home
Class 12
MATHS
The value of lim(x->0)[(1-2x)^nsum(r=0)^...

The value of `lim_(x->0)[(1-2x)^nsum_(r=0)^n_r((x+x^2)/(1-2x))^r]^(1/ x)` is :

A

`e ^(n)`

B

`e ^(-n)`

C

`e ^(3n)`

D

`e ^(-3n)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[(1-2x)^(n)sum_(r=0)^(n)-r((x+x^(2))/(1-2x))^(r)]^((1)/(x)) is :

The value of lim_(xrarr2)Sigma_(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equal to

Let f:R to R differerntiable at x=0 and satisfies f(0)=0 and f'(0)=1, then the value of lim_(x to 0) (1)/(x) sum_(x to 1)^(oo) (-1)^(n) f((x)/(n))is

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

The value of lim_(x rarr0)((1+x)^((1)/(x))-e+(1)/(2)ex)/(x^(2)) is

The value of lim_(x rarr0)((e^(1))/(x))-(1+nx+(n^(2))/(2)x^(2))/(x^(3))(n>0) is

If alpha and beta are the roots of the equation 375x^(2)-25x-2=0, then the value of lim_(n rarr oo)(sum_(r=1)^(n)alpha^(r)+sum_(r=1)^(n)beta^(r)) is

The value of lim_(x rarr0)((1^(x)+2^(x)+3^(x)+.........n^(x))/(n))^((a)/(pi))

lim_(x rarr2)(sum_(r=1)^(n)x^(r)-sum_(r=1)^(n)2^(r))/(x-2)

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2r)/(x-2) is equal to