Home
Class 12
MATHS
If lim (xto oo) (sqrt( x ^(2) -x+1)-ax ...

If `lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0,` then for `k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k !" "pi b ) =`

A

`a`

B

`-a`

C

`2a`

D

`b`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

lim_ (x rarr-oo) x (sqrt (x ^ (2) + k) -x)

If lim_(x to oo) (sqrt(x^(2) -x+1) -ax)=b , then the ordered pair (a, b) is :

lim_(xto oo)(x/(1+x))^(x) is

lim_ (x rarr oo) (sqrt (x ^ (2) + ax + b) -x) =

lim_(x to oo)(sqrt(x^2-x+1)-ax)=b Find the value of 2(a+b) is

If lim _( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

If lim_(xto oo)((x^(2)+1)/(x+1)-ax-b)=oo find a and b.

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by: