Home
Class 12
MATHS
lim (xto0) ((cos x -secx )/(x ^(2) (x+1)...

`lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=`

A

0

B

`-1/2`

C

`-1`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

lim _(xto0) (sin (pi cos ^(2) (tan (sin x ))))/(x ^(2))=

Evaluate the following Limits lim_(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)x)