Home
Class 12
MATHS
lim(x->0)(1+(asinb x)/(cosx))^(1/x), whe...

`lim_(x->0)(1+(asinb x)/(cosx))^(1/x),` where `a,b` are non zero constants is equal to :

A

`e ^(a//b)`

B

`ab`

C

`e ^(ab )`

D

`e ^(b//e)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(1/x)^(1-cosx)

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(x rarr 0) (2(1-cosx))/x^2

solve lim_(x->0) (x^2+1-cosx)/(xsinx)

lim_(x->0)(sin[sec^2x])/(1+[cosx]), where [*] denotes greatest integral function, is

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to