Home
Class 12
MATHS
let a=lim(x->1)(x/lnx-1/(xlnx)) , b=lim(...

let `a=lim_(x->1)(x/lnx-1/(xlnx)) , b=lim_(x->0)((x^3-16x)/(4x+x^2)) , c=lim_(x->0) ln(1+sinx)/x` and `d=lim_(x->-1) (x+1)^3/(3[sin(x+1)-(x+1)])` then the matrix `[[a,b],[c,d]]`

A

Idempotent

B

Involutary

C

Non-singular

D

Nipotent

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

let a=lim_(x rarr1)((x)/(ln x)-(1)/(x ln x)),b=lim_(x rarr0)((x^(3)-16x)/(4x+x^(2))),c=lim_(x rarr0)(ln(1+sin x))/(x) and d=lim_(x rarr-1)((x+1)^(3))/(3[sin(x+1)-(x+1)]) then the matrix [[a,bc,d]]

lim_(x->0) (x^3-3x+1)/(x-1)

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 1) ((ln(1+sinx))/x) and c = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)]) then [[a,b],[c,d]] is

lim_(x->0) (x^2-3x+1)/(x-1)

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

lim_(x to 0) (x^3 sin(1/x))/sinx

If a=lim_(x rarr0)(1-cos x)/(x^(2)),b=lim_(x rarr0)(sin3x)/(x),c=lim_(x rarr oo)(sin x)/(x) then find the value of (2a+b+c)

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x)) equals :