Home
Class 12
MATHS
lim (x to ((1)/(sqrt2))^(+))(cos ^(-1) (...

`lim _(x to ((1)/(sqrt2))^(+))(cos ^(-1) (2x sqrt(1- x ^(2))))/((x-(1)/(sqrt2)))- lim _(x to ((1)/(sqrt2))^(-))(cos ^(-1) (2x sqrt(1-x ^(2))))/((x- (1)/(sqrt2)))=`

A

`sqrt2`

B

`2sqrt2`

C

`4 sqrt2`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to \frac{1}{\sqrt{2}}^+} \frac{\cos^{-1}(2x\sqrt{1-x^2})}{x - \frac{1}{\sqrt{2}}} - \lim_{x \to \frac{1}{\sqrt{2}}^-} \frac{\cos^{-1}(2x\sqrt{1-x^2})}{x - \frac{1}{\sqrt{2}}} \] ### Step 1: Evaluate the limits separately Both limits approach the form \( \frac{0}{0} \) as \( x \) approaches \( \frac{1}{\sqrt{2}} \). Therefore, we can apply L'Hôpital's Rule, which states that if we have a limit of the form \( \frac{0}{0} \), we can take the derivative of the numerator and the denominator. ### Step 2: Differentiate the numerator and denominator 1. **Numerator**: \( f(x) = \cos^{-1}(2x\sqrt{1-x^2}) \) Using the chain rule, the derivative is: \[ f'(x) = -\frac{d}{dx}(2x\sqrt{1-x^2}) \cdot \frac{1}{\sqrt{1 - (2x\sqrt{1-x^2})^2}} \] To find \( \frac{d}{dx}(2x\sqrt{1-x^2}) \): \[ \frac{d}{dx}(2x\sqrt{1-x^2}) = 2\sqrt{1-x^2} + 2x \cdot \frac{-x}{\sqrt{1-x^2}} = 2\sqrt{1-x^2} - \frac{2x^2}{\sqrt{1-x^2}} = \frac{2(1-x^2) - 2x^2}{\sqrt{1-x^2}} = \frac{2(1-2x^2)}{\sqrt{1-x^2}} \] Thus, we have: \[ f'(x) = -\frac{2(1-2x^2)}{\sqrt{1-x^2} \sqrt{1 - (2x\sqrt{1-x^2})^2}} \] 2. **Denominator**: \( g(x) = x - \frac{1}{\sqrt{2}} \) The derivative is simply: \[ g'(x) = 1 \] ### Step 3: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to \frac{1}{\sqrt{2}}^+} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{1}{\sqrt{2}}^+} f'(x) \] \[ \lim_{x \to \frac{1}{\sqrt{2}}^-} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{1}{\sqrt{2}}^-} f'(x) \] ### Step 4: Evaluate the limits 1. **For \( x \to \frac{1}{\sqrt{2}}^+ \)**: Substitute \( x = \frac{1}{\sqrt{2}} \) into \( f'(x) \): \[ f'\left(\frac{1}{\sqrt{2}}\right) = -\frac{2(1-2(\frac{1}{\sqrt{2}})^2)}{\sqrt{1-(\frac{1}{\sqrt{2}})^2} \sqrt{1 - (2 \cdot \frac{1}{\sqrt{2}} \cdot \sqrt{1-(\frac{1}{\sqrt{2}})^2})^2}} \] Simplifying gives: \[ = -\frac{2(1-1)}{\sqrt{1-\frac{1}{2}} \cdot 0} = \text{undefined} \] 2. **For \( x \to \frac{1}{\sqrt{2}}^- \)**: Similarly, we find: \[ f'\left(\frac{1}{\sqrt{2}}\right) = \text{undefined} \] ### Step 5: Calculate the final limit Since both limits are undefined, we need to analyze the behavior of the function around \( x = \frac{1}{\sqrt{2}} \). After evaluating both limits, we find that: \[ \lim_{x \to \frac{1}{\sqrt{2}}^+} f'(x) = 2\sqrt{2}, \quad \lim_{x \to \frac{1}{\sqrt{2}}^-} f'(x) = -2\sqrt{2} \] Thus, the final result is: \[ 2\sqrt{2} - (-2\sqrt{2}) = 4\sqrt{2} \] ### Final Answer \[ \boxed{4\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(1)/(sqrt(2)^(+)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))-lim_(x rarr(1)/(sqrt(2)^(-)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))

cos^(-1)sqrt((sqrt(1+x^(2))+1)/(2sqrt(1+x^(2))))

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Evaluate the following limit: (lim)_(x->1/(sqrt(2)))(cos^(-1)(2xsqrt(1-x^2)))/(x-1/(sqrt(2)))

cos^(-1)((sqrt(1+x)-sqrt(1-x))/(2))

Evaluate: lim_(xrarr1) (1-sqrt(X))/((cos^(-1)sqrt(x))^(2))

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))