Home
Class 12
MATHS
If and n are positive integers, then li...

If ` and n` are positive integers, then `lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2)` equal to :

A

`m-n`

B

`1/n-1/m`

C

`(n-n)/(2mn)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If and n are positive integers,then lim_(x rarr0)((cos x)^((m)/(m))-(cos x)^((pi)/(n)))/(x^(2)) equal to

lim_(xto0) ((cos x)^(1//2)-(cosx)^(1//3))/(sin^2x) is

lim_(x->0)(1/x)^(1-cosx)

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

(lim)_(x->\ 0)(cosx)^(cot2x) equals

Evaluate : lim_(x->0) (1-cosx)/x

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to