Home
Class 12
MATHS
The value of ordered pair (a,b) such tha...

The value of ordered pair (a,b) such that `lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1,` is:

A

`(-(5)/(2),-(3)/(2))`

B

`((5)/(2), (3)/(2))`

C

`(-(5)/(2 ),(3 )/(2))`

D

`((5 )/(2), -(3)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ordered pair \((a, b)\) such that \[ \lim_{x \to 0} \frac{x(1 + a \cos x) - b \sin x}{x^3} = 1, \] we can follow these steps: ### Step 1: Analyze the limit The expression inside the limit is of the form \(\frac{0}{0}\) as \(x \to 0\). Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and the denominator: 1. **Numerator**: \[ \frac{d}{dx}[x(1 + a \cos x) - b \sin x] \] Using the product rule for \(x(1 + a \cos x)\): \[ = (1 + a \cos x) + x(-a \sin x) - b \cos x \] Simplifying gives: \[ = 1 + a \cos x - ax \sin x - b \cos x = 1 + (a - b) \cos x - ax \sin x \] 2. **Denominator**: \[ \frac{d}{dx}[x^3] = 3x^2 \] ### Step 3: Rewrite the limit Now we have: \[ \lim_{x \to 0} \frac{1 + (a - b) \cos x - ax \sin x}{3x^2} \] ### Step 4: Evaluate the limit again As \(x \to 0\), this limit is still of the form \(\frac{0}{0}\). We apply L'Hôpital's Rule again. 1. **Numerator**: \[ \frac{d}{dx}[1 + (a - b) \cos x - ax \sin x] = -(a - b) \sin x - (a \sin x + ax \cos x) \] Simplifying gives: \[ = -(a - b) \sin x - a \sin x - ax \cos x = -(a + (a - b)) \sin x - ax \cos x \] 2. **Denominator**: \[ \frac{d}{dx}[3x^2] = 6x \] ### Step 5: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{-(a + (a - b)) \sin x - ax \cos x}{6x} \] ### Step 6: Evaluate the limit as \(x \to 0\) As \(x \to 0\), \(\sin x \to x\) and \(\cos x \to 1\): \[ \lim_{x \to 0} \frac{-(a + (a - b))x - ax}{6x} = \frac{-(2a - b)}{6} \] Setting this equal to 1 gives: \[ \frac{-(2a - b)}{6} = 1 \implies -(2a - b) = 6 \implies 2a - b = -6 \quad \text{(Equation 1)} \] ### Step 7: Set up the first equation From the original limit, we also have: \[ 1 + (a - b) - b = 0 \implies a - 2b + 1 = 0 \quad \text{(Equation 2)} \] ### Step 8: Solve the equations We have two equations: 1. \(2a - b = -6\) 2. \(a - 2b + 1 = 0\) From Equation 2, we can express \(a\) in terms of \(b\): \[ a = 2b - 1 \] Substituting this into Equation 1: \[ 2(2b - 1) - b = -6 \implies 4b - 2 - b = -6 \implies 3b - 2 = -6 \implies 3b = -4 \implies b = -\frac{4}{3} \] Now substituting \(b\) back to find \(a\): \[ a = 2(-\frac{4}{3}) - 1 = -\frac{8}{3} - 1 = -\frac{8}{3} - \frac{3}{3} = -\frac{11}{3} \] ### Final Result Thus, the ordered pair \((a, b)\) is: \[ \left(-\frac{11}{3}, -\frac{4}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1 then

lim _(xto0) (sin (pi cos ^(2) (tan (sin x ))))/(x ^(2))=

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

Find the value of a and b if lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

Find the values of a and b in order that lim_(x->0) (x(1+a cos x)-b sinx)/x^3=1 [using L' Hospital' srule].