Home
Class 12
MATHS
Let alpha=lim(n->oo)((1^3-1^2)+(2^3-2^2)...

Let `alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4),` then `alpha` is equal to :

A

`1/3`

B

`1/4`

C

`1/2`

D

None existent

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let alpha = lim _(x to oo) ((1 ^(3) -1 ^(2))+ (2^(3)-2 ^(2)) +…+ (n ^(3 ) n ^(2))/(pi^(4)), then alpha is equal is:

lim_(n->oo) [ (1^3+ 2^3 + 3^3 -------n^3)/n^4]

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_ (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)