Home
Class 12
MATHS
The value of lim (xto0) (cos (sin x )- c...

The value of `lim _(xto0) (cos (sin x )- cos x)/(x ^(4))` is equal to :

A

`1/5`

B

`1/6`

C

`1/4`

D

`(1)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

What is the value of lim_(xto0) (cos(ax)-cos(bx))/(x^(2))

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).