Home
Class 12
MATHS
Consider the sequence un=sum(r=1)^n r/2^...

Consider the sequence `u_n=sum_(r=1)^n r/2^r , n >= 1` then the `limit_(n->oo) u_n`

A

1

B

e

C

`1/2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Consider the sequence u_(n)=sum_(r=1)^(n)(r)/(2^(r)),n>=1 then the lim it_(n rarr oo)u_(n)

Find sum_(n=1)^n u_n if u_n=sum_(n=0)^n1/2^n .

If u(n)=prod_(r=0)^n(1+r^2/n^2)^r "then" lim_(nrarroo) (u)^((-4)/n^2

If S_(1)= sum_(r=1)^(n) r , S_(2) = sum_(r=1)^(n) r^(2),S_(3) = sum_(r=1)^(n)r^(3) then : lim_(n to oo ) (S_(1)(1+(S_(8))/8))/((S_(2))^(2)) =

In a geometric series , the first term is a and common ratio is r. If S_n denotes the sum of the n terms and U_n=Sigma_(n=1)^(n) S_n , then rS_n+(1-r)U_n equals

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is

If the sum of the series sum_(n=0)^(oo)r^(n),|r|<1 is s then find the sum of the series sum_(n=0)^(oo)r^(2n)