Home
Class 12
MATHS
The value of lim(x->pi/4)(1+[x])^(1//ln...

The value of `lim_(x->pi/4)(1+[x])^(1//ln(tanx))` (where[.] denote the greatest integer function) is equal to

A

0

B

1

C

e

D

`1/e`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr(pi)/(4))(1+[x])^(1/ln(tan x)) (wheref..] denote the greatest integer function) is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is