Home
Class 12
MATHS
The value of lim (xto oo) ((n !)/(n ^(n)...

The value of `lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN` is equal to:

A

`((1)/(e ))^(3//4)`

B

`e ^(3//4)`

C

`e ^(-1)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of sum_(n=1)^(oo)(4n-2)/(3^(n))

The value of lim_(n rarr oo)((1+(1)/(n(n+100))))/((1+(1)/(n(n+200)))^(n^(3))) is equal to

lim_(xto oo) (1)/(n) {1+e^(1//n)+e^(2//n)+e^(3//n)+.....+e^((n-1)/(n))} is equal to

The value of lim_(n rarr oo)(1/(1-n^4)+8/(1-n^4)+...+n^3/(1-n^4)) is

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n rarr oo)n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2)+16n+16)+...+ nterms } is equal to

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-