Home
Class 12
MATHS
If f(x) be a cubic polynomial and lim(x-...

If `f(x)` be a cubic polynomial and `lim_(x->0)(sin^2x)/(f(x))=1/3` then `f(1)` can not be equal to :

A

0

B

`-5`

C

`3`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x) be a cubic polynomial and lim_(x rarr0)(sin^(2)x)/(f(x))=(1)/(3) then f(1) can not be equal to :

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then lim_(xto1) (x-1)/(sin(f(x)-2x-1)) is equal to

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. If lim_(x to 0)(1+(f(x))/(x^(2)))=3, then f(2) is equal to

If f(X) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x) and f(2)gt1 , then lim_(x rarr 1)f(x) is

Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a local minima at x = 1, and f'(x) has a local minima at x = -1. Then f(3) is equal to _________.

Let f(x) be a function such that lim_(x rarr0)(f(x))/(x)=1 and lim_(x rarr0)(x(1+a cos x)-b sin x)/({f(x)^(3)})=1 ,then b-3a is equals to

Let f(x) be a cubic polynomial with leading coefficient unity such that f(0)=1 and all the roots of f(x)=0 are also roots of f(x)=0. If f(x)dx=g(x)+C, where g(0)=(1)/(4) and C is constant of integration,then g(3)-g(1) is equal to