Home
Class 12
MATHS
If f (x)= |{:(x cos x, 2x sin x, x tan x...

If `f (x)= |{:(x cos x, 2x sin x, x tan x),(1,x,1),(1,2x,1):}|,` find `lim _(xto0) (f(x))/(x ^(2)).`

A

0

B

1

C

`-1`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^2} \] where \[ f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 1 & 2x & 1 \end{vmatrix} \] ### Step 1: Calculate the determinant \( f(x) \) We can use the determinant formula for a 3x3 matrix: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: - \( a = x \cos x \) - \( b = 2x \sin x \) - \( c = x \tan x \) - \( d = 1 \) - \( e = x \) - \( f = 1 \) - \( g = 1 \) - \( h = 2x \) - \( i = 1 \) Now, substituting these values into the determinant formula: \[ f(x) = x \cos x \left( x \cdot 1 - 1 \cdot 2x \right) - 2x \sin x \left( 1 \cdot 1 - 1 \cdot 1 \right) + x \tan x \left( 1 \cdot 2x - 1 \cdot x \right) \] ### Step 2: Simplify the determinant Calculating each term: 1. The first term: \[ x \cos x (x - 2x) = x \cos x (-x) = -x^2 \cos x \] 2. The second term: \[ -2x \sin x (1 - 1) = 0 \] 3. The third term: \[ x \tan x (2x - x) = x \tan x (x) = x^2 \tan x \] Combining these results: \[ f(x) = -x^2 \cos x + x^2 \tan x \] ### Step 3: Factor out \( x^2 \) We can factor \( x^2 \) out of \( f(x) \): \[ f(x) = x^2 (\tan x - \cos x) \] ### Step 4: Substitute into the limit Now we substitute \( f(x) \) into the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{x^2 (\tan x - \cos x)}{x^2} = \lim_{x \to 0} (\tan x - \cos x) \] ### Step 5: Evaluate the limit Now we evaluate the limit: \[ \lim_{x \to 0} (\tan x - \cos x) \] At \( x = 0 \): - \( \tan(0) = 0 \) - \( \cos(0) = 1 \) Thus: \[ \lim_{x \to 0} (\tan x - \cos x) = 0 - 1 = -1 \] ### Final Result Therefore, the limit is: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

If f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " lim_(x rarr 0) (f (x))/(x^(2)) , is

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

Let (x)=|[cos x,2sin x,sin x],[x,x,x],[1,2x,x]|," then "lim_(x rarr0)(f(x))/(x^(2) is equal

Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, then lim _(xto0), f ({(x)/(tan x)})is :({.} denotes fractional part of function)

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

If f(x)=det[[sin x,cos x,tan xx^(3),x^(2),x2x,1,1]] then show that lim_(x rarr0)(f(x))/(x^(2))=1