Home
Class 12
MATHS
let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sq...

let `f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x}))` where `{x}` denotes the fractional part of `x` then

A

`lim _(x to 0^(+))f (x)= (pi)/(4)`

B

`lim _(x to 0^(+))f (x) =sqrt2 lim _(x to 0^(-))f (x)`

C

`lim _(x to 0^(-))f (x) =(pi)/(4 sqrt2)`

D

`lim _(x to 0^(-))f (x) = (pi)/(2 sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|11 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

The domain of the function f(x)=(sqrt(x^(12)-x^(3)+x^(4)-x+1))/(2sqrt(2{x}^(2)-3{x}+1)) (where {} denotes the fractional part functio) is

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

Let f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2)).sin^(-1)(1-{x}))/(sqrt(2) ({x}+{x}^(3)))",",x ne 0):} , where {.} is fractional part of x, then

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function