Home
Class 12
MATHS
If 2 sin x. cos y=1, then (d ^(2)y)/(dx...

If `2 sin x. cos y=1, ` then `(d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4))` is …….

A

`-4`

B

`-2`

C

`-6`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) at the point \(\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\) given the equation \(2 \sin x \cos y = 1\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \sin x \cos y = 1 \] Dividing both sides by 2, we get: \[ \sin x \cos y = \frac{1}{2} \] ### Step 2: Differentiate with respect to \(x\) Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(\sin x \cos y) = \frac{d}{dx}\left(\frac{1}{2}\right) \] Using the product rule on the left side: \[ \cos x \cos y + \sin x \left(-\sin y \frac{dy}{dx}\right) = 0 \] This simplifies to: \[ \cos x \cos y - \sin x \sin y \frac{dy}{dx} = 0 \] ### Step 3: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ \sin x \sin y \frac{dy}{dx} = \cos x \cos y \] Thus, we find: \[ \frac{dy}{dx} = \frac{\cos x \cos y}{\sin x \sin y} \] ### Step 4: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{\cos x \cos y}{\sin x \sin y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(\sin x \sin y)(-\sin x \cos y + \cos x \sin y \frac{dy}{dx}) - (\cos x \cos y)(\cos x \sin y + \sin x \cos y \frac{dy}{dx})}{(\sin x \sin y)^2} \] ### Step 5: Substitute \(x = \frac{\pi}{4}\) and \(y = \frac{\pi}{4}\) At \(x = \frac{\pi}{4}\) and \(y = \frac{\pi}{4}\): - \(\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\) - \(\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\) Substituting these values into the expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{\left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{dy}{dx}\right) - \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{dy}{dx}\right)}{\left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right)^2} \] ### Step 6: Simplify the expression After substituting and simplifying, we find that: \[ \frac{d^2y}{dx^2} = -4 \] ### Final Answer Thus, the value of \(\frac{d^2y}{dx^2}\) at \(\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos

Similar Questions

Explore conceptually related problems

If (sin x)(cos y)=(1)/(2), then (d^(2)y)/(dx^(2)) at ((pi)/(4),(pi)/(4)) is (a)-4(b)-2(c)-6(d)0 at ((pi)/(4),(pi)/(4))

If y=cos^(-1)((1)/(2sin x)) then (d^(2)y)/(dx^(2)) at ((pi)/(4),(pi)/(4)) is

If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

If y + sin y = cos x, then (dy)/(dx) at   ((pi)/(2), (pi)/(2)) is :

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

If 3y+sin(xy)=4" then "((dy)/(dx))" at "((pi)/(2),1)

x=t cos t,y=t+sin t. Then (d^(2)tau)/(dy^(2)) at t=(pi)/(2) is (pi+4)/(2)(b)-(pi+4)/(2)-2(d) none of these

If y=cos x+sin x, then at x=(pi)/(2),(d^(2)y)/(dx^(2)) is

If x=a cos theta,y=b sin theta, then (d^(2)y)/(dx^(2)) when theta=(pi)/(4) is given by

VK JAISWAL-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4))...

    Text Solution

    |

  2. Let f (x)= {{:(ac (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x I [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and fifferentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim (xto oo) (f(x...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (piy)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y ^(+) +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  20. For the curve sin x + si y=1 lying in the first quadrant there exist a...

    Text Solution

    |

  21. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |