Home
Class 12
MATHS
let the function f be defined by f (x)= ...

let the function f be defined by `f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),( 2 px+3qx ^(2)"," , x ge 2):},` Then:

A

f (x) is continous in R if `3p+10q=4`

B

`f (x)` is differentiable in R is `p=q =(4)/(13)`

C

If `p=-2, q=1,` then f(x) is continous in R

D

f (x) is differentiable in R is `2p+ 11q=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = \begin{cases} p + qx + x^2 & \text{if } x < 2 \\ 2px + 3qx^2 & \text{if } x \geq 2 \end{cases} \] We need to check for continuity and differentiability at \( x = 2 \). ### Step 1: Check for Continuity at \( x = 2 \) For \( f(x) \) to be continuous at \( x = 2 \), the left-hand limit as \( x \) approaches 2 must equal the right-hand limit, and both must equal \( f(2) \). 1. **Left-hand limit** as \( x \) approaches 2: \[ f(2^-) = p + 2q + 2^2 = p + 2q + 4 \] 2. **Right-hand limit** at \( x = 2 \): \[ f(2^+) = 2p(2) + 3q(2^2) = 4p + 12q \] 3. **Setting the limits equal for continuity**: \[ p + 2q + 4 = 4p + 12q \] Rearranging gives: \[ 4 - 4p + 2q - 12q = 0 \implies 10q + 3p = 4 \quad \text{(Equation 1)} \] ### Step 2: Check for Differentiability at \( x = 2 \) For \( f(x) \) to be differentiable at \( x = 2 \), the left-hand derivative must equal the right-hand derivative. 1. **Right-hand derivative**: \[ f'(2^+) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2p(2+h) + 3q(2+h)^2) - (4p + 12q)}{h} \] Expanding \( f(2+h) \): \[ = \lim_{h \to 0} \frac{(4p + 2ph + 3q(4 + 4h + h^2)) - (4p + 12q)}{h} \] \[ = \lim_{h \to 0} \frac{2ph + 12qh + 3qh^2}{h} = 2p + 12q \] 2. **Left-hand derivative**: \[ f'(2^-) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{h} = \lim_{h \to 0} \frac{(p + q(2-h) + (2-h)^2) - (p + 2q + 4)}{-h} \] Expanding \( f(2-h) \): \[ = \lim_{h \to 0} \frac{(p + 2q - qh + 4 - 4h + h^2) - (p + 2q + 4)}{-h} \] \[ = \lim_{h \to 0} \frac{-qh - 4h + h^2}{-h} = q + 4 \] 3. **Setting the derivatives equal for differentiability**: \[ 2p + 12q = q + 4 \] Rearranging gives: \[ 2p + 11q = 4 \quad \text{(Equation 2)} \] ### Step 3: Solve the System of Equations We have two equations: 1. \( 10q + 3p = 4 \) (Equation 1) 2. \( 2p + 11q = 4 \) (Equation 2) From Equation 1, we can express \( p \) in terms of \( q \): \[ p = \frac{4 - 10q}{3} \] Substituting \( p \) into Equation 2: \[ 2\left(\frac{4 - 10q}{3}\right) + 11q = 4 \] \[ \frac{8 - 20q}{3} + 11q = 4 \] Multiplying through by 3 to eliminate the fraction: \[ 8 - 20q + 33q = 12 \] \[ 13q = 4 \implies q = \frac{4}{13} \] Substituting \( q \) back to find \( p \): \[ p = \frac{4 - 10\left(\frac{4}{13}\right)}{3} = \frac{4 - \frac{40}{13}}{3} = \frac{\frac{52}{13} - \frac{40}{13}}{3} = \frac{12/13}{3} = \frac{4}{13} \] ### Conclusion Thus, we find: \[ p = \frac{4}{13}, \quad q = \frac{4}{13} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(3)-1",", x lt2),(x^(2)+3"," , x ge 2):} Then

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

Let f be a function defined by f(x) = 2x^(2) - log |x|, x ne 0 then

Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} then:

show that f(x) ={{:( (2x-1)",",if , x lt2),( (3x)/2",,if x ge 2):} is continuous

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

VK JAISWAL-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  4. If y =e ^(x sin (x ^(3)))+(tan x)^(x) then (dy)/(dx) may be equal to:

    Text Solution

    |

  5. Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),...

    Text Solution

    |

  8. If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) ...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f ('(x)...

    Text Solution

    |

  10. If f(x)={|x|-3 x < 1|x-2|+a x >= 1 & g(x)={2-|x| x < 2 sgn(x)-b x >= 2...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2)...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |