Home
Class 12
MATHS
Consider a function f (x) in [0,2pi] def...

Consider a function `f (x)` in `[0,2pi]` defined as :
` f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):}`
where {.} denotes greatest integer function then.
Number of points where `f (x)` is non-derivable :

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos

Similar Questions

Explore conceptually related problems

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. lim _(x to ((3pi)/(2))^+), f (x) equals

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

The number of solutions of [sin x]+cos x=1 in x in[0,6 pi] where [ ] denotes greatest integer function

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

VK JAISWAL-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Consider a function defined in [-2,2] f (x)={{:({x}, -2 lle x lt -1)...

    Text Solution

    |

  2. Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),...

    Text Solution

    |

  3. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  4. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  5. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  6. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  7. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  8. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  9. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  10. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  11. f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x, where k in R...

    Text Solution

    |

  12. f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x, where k in R...

    Text Solution

    |

  13. f (x) = lim (x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +...

    Text Solution

    |

  14. f (x) = lim (x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +...

    Text Solution

    |

  15. f (x) = lim (x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +...

    Text Solution

    |

  16. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  17. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  18. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  19. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  20. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |