Home
Class 12
MATHS
Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-...

Let `y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1` then the possible value of `1/3 f(3)` equals :

A

9

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation, we start with the equation: \[ \frac{x}{y} \frac{dy}{dx} = \frac{3x^2 - y}{2y - x^2} \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y(3x^2 - y)}{x(2y - x^2)} \] ### Step 2: Cross Multiplying Cross-multiplying gives us: \[ x(2y - x^2) dy = y(3x^2 - y) dx \] ### Step 3: Expanding Both Sides Expanding both sides, we have: \[ 2xy dy - x^3 dy = 3xy^2 dx - y^2 dx \] ### Step 4: Collecting Terms Rearranging the terms, we get: \[ 2xy dy - 3xy^2 dx + y^2 dx = x^3 dy \] ### Step 5: Factoring Factoring out common terms, we can write: \[ (2xy - x^3) dy = (3xy^2 - y^2) dx \] ### Step 6: Separating Variables Now we separate the variables: \[ \frac{dy}{3y^2 - y} = \frac{dx}{2x - x^2} \] ### Step 7: Integrating Both Sides Next, we integrate both sides: \[ \int \frac{dy}{y(3 - 1)} = \int \frac{dx}{x(2 - x)} \] This gives us: \[ \ln |y| = \ln |x| + C \] ### Step 8: Exponentiating Exponentiating both sides leads to: \[ y = kx \] ### Step 9: Using Initial Condition Using the initial condition \(f(1) = 1\): \[ 1 = k \cdot 1 \implies k = 1 \] Thus, we have: \[ y = x \] ### Step 10: Finding \(f(3)\) Now, we need to find \(f(3)\): \[ f(3) = 3 \] ### Step 11: Finding \(\frac{1}{3} f(3)\) Finally, we calculate: \[ \frac{1}{3} f(3) = \frac{1}{3} \cdot 3 = 1 \] ### Final Answer The possible value of \(\frac{1}{3} f(3)\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|8 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|11 Videos
  • ELLIPSE

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

If y=f(x)+(1)/(y) , then (dy)/(dx)=(y^(2)f'(x))/(1+y^(2))

Let y=f(x) be a real valued function satistying x(dy)/(dx)=x^(2)+y-2,f(1)=1 then f(3) equal

Let y=f (x) be a real valued function satisfying x (dy)/(dx) =x ^(2) +y-2, f (1)=1, then :

Let f(x) be continuous and differentiable function everywhere satisfying f(x+y)=f(x)+2y^(2)+kxy and f(1)=2, f(2)=8 then the value of f(3) equals

For y gt 0 and x in R, ydx + y^(2)dy = xdy where y = f(x). If f(1)=1, then the value of f(-3) is

Let y=f(x) satisfy the differential equation (dy)/(dx)=(x+y)/(x),y(1)=1, then y((1)/(e)) is equal

If y=f(x) is solution of differentiable equation (dy)/(dx)=y/x((1-3x^(2)y^(3)))/((2x^(2)y^(3)+1)) , then ( f(x).x)^(3) is equal to