Home
Class 12
MATHS
If |{:(1,cos alpha, cos beta),(cos alpha...

If `|{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}|` then the value of `cos^2 alpha + cos^2 beta + cos^2 gamma` is :

A

1

B

`1/2`

C

`3/8`

D

`9/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinants and set them equal to each other. Let's denote the determinants as \( D_1 \) and \( D_2 \). ### Step 1: Write the Determinants The first determinant \( D_1 \) is given by: \[ D_1 = \begin{vmatrix} 1 & \cos \alpha & \cos \beta \\ \cos \alpha & 1 & \cos \gamma \\ \cos \beta & \cos \gamma & 1 \end{vmatrix} \] The second determinant \( D_2 \) is given by: \[ D_2 = \begin{vmatrix} 0 & \cos \alpha & \cos \beta \\ \cos \alpha & 0 & \cos \gamma \\ \cos \beta & \cos \gamma & 0 \end{vmatrix} \] ### Step 2: Calculate \( D_1 \) To calculate \( D_1 \), we can use the formula for the determinant of a 3x3 matrix: \[ D_1 = 1 \cdot \begin{vmatrix} 1 & \cos \gamma \\ \cos \gamma & 1 \end{vmatrix} - \cos \alpha \cdot \begin{vmatrix} \cos \alpha & \cos \gamma \\ \cos \beta & 1 \end{vmatrix} + \cos \beta \cdot \begin{vmatrix} \cos \alpha & 1 \\ \cos \beta & \cos \gamma \end{vmatrix} \] Calculating the first term: \[ \begin{vmatrix} 1 & \cos \gamma \\ \cos \gamma & 1 \end{vmatrix} = 1 - \cos^2 \gamma = \sin^2 \gamma \] Calculating the second term: \[ \begin{vmatrix} \cos \alpha & \cos \gamma \\ \cos \beta & 1 \end{vmatrix} = \cos \alpha \cdot 1 - \cos \beta \cdot \cos \gamma = \cos \alpha - \cos \beta \cos \gamma \] Calculating the third term: \[ \begin{vmatrix} \cos \alpha & 1 \\ \cos \beta & \cos \gamma \end{vmatrix} = \cos \alpha \cdot \cos \gamma - \cos \beta \cdot 1 = \cos \alpha \cos \gamma - \cos \beta \] Putting it all together: \[ D_1 = 1 \cdot \sin^2 \gamma - \cos \alpha (\cos \alpha - \cos \beta \cos \gamma) + \cos \beta (\cos \alpha \cos \gamma - \cos \beta) \] Expanding this gives: \[ D_1 = \sin^2 \gamma - \cos^2 \alpha + \cos \alpha \cos \beta \cos \gamma + \cos \beta \cos \alpha \cos \gamma - \cos^2 \beta \] So, \[ D_1 = \sin^2 \gamma - \cos^2 \alpha - \cos^2 \beta + 2 \cos \alpha \cos \beta \cos \gamma \] ### Step 3: Calculate \( D_2 \) For \( D_2 \): \[ D_2 = -\begin{vmatrix} \cos \alpha & \cos \beta \\ \cos \beta & \cos \gamma \end{vmatrix} = -(\cos \alpha \cos \gamma - \cos^2 \beta) \] So, \[ D_2 = -\cos \alpha \cos \gamma + \cos^2 \beta \] ### Step 4: Set \( D_1 = D_2 \) Now we set \( D_1 = D_2 \): \[ \sin^2 \gamma - \cos^2 \alpha - \cos^2 \beta + 2 \cos \alpha \cos \beta \cos \gamma = -\cos \alpha \cos \gamma + \cos^2 \beta \] ### Step 5: Simplify the Equation Rearranging gives: \[ \sin^2 \gamma - \cos^2 \alpha + \cos \alpha \cos \gamma = 0 \] Using the identity \( \sin^2 \gamma = 1 - \cos^2 \gamma \): \[ 1 - \cos^2 \gamma - \cos^2 \alpha + \cos \alpha \cos \gamma = 0 \] ### Step 6: Solve for \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \) From the equation, we can derive: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] ### Final Answer Thus, the value of \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

If cos alpha+cos beta+cos gamma=0; then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If cos alpha+cos beta+cos gamma=0, then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If cos alpha, cos beta, cos gamma are the direction cosines of a line then the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma is__________

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)